Наши книги можно приобрести по картам єПідтримка!

Содержание

Предисловие

Знакомство с технологией наддува

Уроки истории

Турбокомпрессоры: прошлое и настоящее

Закись азота: от истоков до наших дней

Наддув: теория и основные принципы

Что необходимо знать о турбокомпрессорах

Управление давлением наддува турбокомпрессора

Стратегия предотвращения турбоям в турбокомпрессорах

Что необходимо знать о турбокомпрессорах

Охлаждение впускного заряда

Впрыск воды и другие альтернативные решения

Топливо и топливные присадки

Система подачи топлива

Система впуска воздуха

Впрыск закиси азота

Система выпуска отработанных газов

Процесс горения и система зажигания

Система управления двигателем

Повышение износостойкости двигателя

Система смазки

Система охлаждения

Модификация заводского двигателя с наддувом

Проверка теории на практике

И еще несколько размышлений

Только оригинальные руководства
Доступно сразу после оплаты
Полное соответствие бумажным изданиям
100% защита ваших оплат
(9)

Степень сжатия против наддува

Обычно пользователи нашего сайта находят эту страницу по следующим запросам:
инерционный наддув, давление наддува турбины, электрический наддув двигателя, механический наддув двигателя, технические характеристики автомобиля, дизельное топливо, степени сжатия, зона завихрения

Степень сжатия против наддува

Теперь давайте рассмотрим отношение степени сжатия и давления наддува. На протяжении многих лет специалисты предлагали различные математические формулы для расчета подходящего давления сжатия при определенном давлении наддува. Но они оказались не очень эффективными.

Во-первых, не учитывалась температура впускного заряда, которая может значительно варьироваться при одном и том же давлении наддува из-за широкого диапазона эффективности нагнетателей (45% для нагнетателей Рутс и до 80% для центробежных нагнетателей) и из-за эффективности промежуточного охладителя (0% без промежуточного охладителя и до 85% с очень эффективным промежуточным охладителем).

Во-вторых, в расчет не принималось то, что различные типы нагнетателей нагнетают давление в коллекторе при различной частоте вращения двигателя. Конечно же, даже незначительное давление наддува, скажем, в 0,3 бар при частоте вращения 1800 об/мин, при использовании нагнетателя Рутс потребует использования более низкой степени сжатия, чем двигатель с турбокомпрессором, в котором давление наддува поднимается до 0,3 бар только при частоте вращения 6000 об/мин.

В-третьих, не учитывался тот факт, что все двигатели разные. Головки блока цилиндров из различных сплавов, четырехклапанные камеры сгорания и кулачки с большими фазами открытия клапанов обычно указывают на то, что двигатель может выдержать более высокую степень сжатия. Чугунные головки блока цилиндров, двухклапанные камеры сгорания, кулачки с маленькими фазами открытия клапанов, карбюраторы или механический впрыск топлива и механический распределитель опережения зажигания указывают на то, что необходимо использовать более низкую степень сжатия.

В-четвертых, в этих формулах не брались в расчет такие переменные, как масса автомобиля, аэродинамические свойства, общее передаточное число, а также расстояние между передаточными числами. Тяжелый автомобиль в форме кирпича с малолитражным двигателем, «медленной» коробкой передач и растянутыми передачами требует более низкой степени сжатия. С другой стороны, легкий автомобиль или, скажем, мотоцикл сбольшим двигателем, с низкими передаточными числами, благодаря которым двигатель быстро разгоняется до максимальной частоты вращения, будет отлично работать при высокой степени сжатия.

Оставив в стороне все эти общие замечания, можно говорить более конкретно. Теперь необходимо определить назначение автомобиля – сферу его эксплуатации. Будет ли он ежедневно использоваться в условиях городского движения или на извилистых дорогах в деревне? Возможно, автомобиль будет часто двигаться по скоростным шоссе или по гоночным трассам в выходные? А может быть, этот автомобиль будет предназначен специально для соревнований?

Если это автомобиль общего назначения, следует учесть несколько факторов. Какой тип топлива наиболее доступен, а также топливо с каким октановым числом вы будете постоянно заливать в бак? Чаще всего выбор падает на топливо с октановым числом 95 по исследовательскому методу, но, если вы живете в регионе, где топливо с октановым числом 91 по исследовательскому методу намного дешевле и доступнее, вы можете остановить свой выбор на более экономном варианте.

Следующий фактор – расход топлива. Сейчас вы можете не отнестись к этому серьезно, но, если вы будете проезжать 100 км каждую неделю, вы захотите «выжать» больше километров пробега из каждого литра топлива. Более высокая степень сжатия означает сокращение расхода топлива. Например, снижение степени сжатия с 9:1 до 8:1 приведет к снижению расхода топлива на 4-5% при движении на крейсерской скорости.

Если вы решили использовать турбокомпрессор, не стоит забывать о технических характеристиках при движении автомобиля. Турбированный двигатель с низкой степенью сжатия не сделает регулярное вождение приятнее. Это приемлемо при движении по скоростным шоссе, но вгородских условиях вы получите больше удовольствия от вождения при более высокой степени сжатия, как минимум 8,5:1, при этом необходимо использовать топливо с октановым числом от 91 и выше.