Содержание
Знакомство с технологией наддува
Уроки истории
- Уроки истории
- Гоночные автомобили с нагнетателями
- Драгстеры с нагнетателями
- Нагнетатели Рутс на легковых автомобилях
- Центробежные нагнетатели
- Шнековый нагнетатель Лисхольма
Турбокомпрессоры: прошлое и настоящее
- Турбокомпрессоры: прошлое и настоящее
- Турбокомпрессоры на овалах и традиционных кольцевых гонках
- Развитие двигателей «Формулы-1»
- Устранение проблем с прокладкой головки блока цилиндров
- Разработка специальных видов топлива
- Преодоление турбоям
- Развитие двигателей в раллийных гонках
- Комбинированный наддув
- Последовательный турбонаддув
- Развитие систем, сглаживающих последствия турбоям
Закись азота: от истоков до наших дней
- Закись азота: от истоков до наших дней
- Возвращение закиси азота
- Возвращение закиси азота на треть
- Как избежать повреждения двигателя
Наддув: теория и основные принципы
- Наддув: теория и основные принципы
- Понятие плотности
- Детонация и раннее зажигание
- Как смещение угла опережения зажигания в сторону отставания влияет на мощность
- Степень сжатия против наддува
- Двигатель с изменяемой степенью сжатия компании SAAB
- Правила соревнований и спецификации топлива
- Расчет степени сжатия
- Зазор в верхней части блока цилиндров и зона завихрения в легковых автомобилях
- Зона завихрения в гоночных двигателях
- Толщина днища поршня, положение поршневого кольца и длина шатуна
Что необходимо знать о турбокомпрессорах
- Что необходимо знать о турбокомпрессорах
- Как турбокомпрессоры увеличивают мощность на выходе
- Отношение турбины A/R и выбор корпуса
- Факторы, влияющие на выбор компрессора
- Факторы, которые следует учитывать при выборе одного или нескольких турбокомпрессоров
- Гибридные турбокомпрессоры
- Основные принципы ухода за турбокомпрессором
Управление давлением наддува турбокомпрессора
- Управление давлением наддува турбокомпрессора
- Впускные вентиляционные клапаны
- Перепускной клапан выхлопных газов
- Датчик манометрического давления и датчик абсолютного давления
- Электронное управление давлением наддува
- Выбор внешнего перепускного клапана
Стратегия предотвращения турбоям в турбокомпрессорах
Что необходимо знать о турбокомпрессорах
- Что необходимо знать о турбокомпрессорах
- Выбор между нагнетателем и турбокомпрессором
- Привод и смазка нагнетателя
- Управление давлением наддува и клапаны сброса давления
Охлаждение впускного заряда
- Охлаждение впускного заряда
- Воздушный и водяной промежуточные охладители
- Конструкции с двумя охладителями
- Трубопроводы и соединения
Впрыск воды и другие альтернативные решения
- Впрыск воды и другие альтернативные решения
- Расположение распылителей
- Смесь воды и спирта
- Вспомогательные системы впрыска
Топливо и топливные присадки
- Топливо и топливные присадки
- Химический состав топлива и другие стандарты
- Использование нитрометана и смеси
Система подачи топлива
- Система подачи топлива
- Проверка пропускной способности и классификация форсунок
- Топливный насос и фильтр
- Расположение топливных форсунок
Система впуска воздуха
- Система впуска воздуха
- Воздушные фильтры с высокими техническими характеристиками
- Модификации головки блока цилиндров
- Выбор распредвала
Впрыск закиси азота
Система выпуска отработанных газов
- Система выпуска отработанных газов
- Изготовление коллектора трубчатого типа
- Размышления о размере выхлопных труб
- Конструкция выпускного коллектора
- Изготовление и обработка коллекторов
- Конструкция и выбор глушителя
Процесс горения и система зажигания
- Процесс горения и система зажигания
- Контактные системы зажигания
- Емкостная система зажигания
- Роль датчика детонации
- Тепловой коэффициент свечи зажигания
- Типы электродов свечи зажигания и материалы
- Полярность катушки зажигания
- Крышка распределителя и контакт ротора
Система управления двигателем
- Система управления двигателем
- Датчик массового расхода воздуха
- Системы измерения интенсивности потока воздуха
- Система Alpha-N
- Использование двух блоков и система Piggy-back
- Выбор подходящего динамометрического стенда
Повышение износостойкости двигателя
- Повышение износостойкости двигателя
- Расточка цилиндров
- Хонингование цилиндра
- Основная подготовка и балансировка
- Конструкция и производство поршней
- Поршневые кольца
- Демпфер крутильных колебаний
- Маховик
Система смазки
- Система смазки
- Вязкость и мощность
- Масляные насосы
- Система сухого картера
- Масляный бак
- Сапуны двигателя и разрежение в картере
- Масляные экраны и отражатели
- Вакуумный насос картера
Система охлаждения
- Система охлаждения
- Система охлаждения под давлением
- Охлаждение высокомощных двигателей
- Техническое обслуживание и конструкция радиатора
Модификация заводского двигателя с наддувом
Проверка теории на практике
- Проверка теории на практике
- Тест на соотношение топливовоздушной смеси и детонацию
- Тест для проверки эффективности компрессора
- Тест технических характеристик турбокомпрессора
- Проверка эффективности промежуточного охладителя
- Расчет эффективности промежуточного охладителя
- Проверка на наличие утечек под давлением и проблемы в конструкции воздуховодов
- Проверки водяного промежуточного охладителя
- Другие «похитители» мощности
И еще несколько размышлений
Расчет степени сжатия
Обычно пользователи нашего сайта находят эту страницу по следующим запросам:
инерционный наддув, давление наддува турбины, электрический наддув двигателя, механический наддув двигателя, технические характеристики автомобиля, дизельное топливо, степени сжатия, зона завихрения
Расчет степени сжатия
Стоит также учитывать, что речь идет о реальной степени сжатия. Некоторые производители работают с достаточно маленькими допусками, поэтому степень сжатия их двигателей не варьируется более чем на 0,15 от указанного значения. К сожалению, многие автомобили демонстрируют значительно большие различия в значениях, в некоторых случаях отклонения могут составлять 0,3 и даже больше. Следовательно, двигатель, который, по вашему мнению, имеет степень сжатия 9,5:1, может на самом деле иметь степень сжатия 9,8:1. Поэтому, вместо того чтобы рассчитывать давление наддува на основании линии 9,0:1, вам необходимо использовать линию 10,2:1. Учтите, что я не рекомендую использовать давление наддува выше 9,5:1. Нижняя линия на графике показывает подходящие значения давления наддува, если вы решите установить нагнетатель на двигатель в заводском исполнении с высокой степенью сжатия.
Действительное давление сжатия – это отношение между общим объемом цилиндра, прокладки головки блока цилиндров и камеры сгорания споршнем в нижней мертвой точке и объема, содержащегося в пространстве между днищем поршня, прокладкой головки блока цилиндров икамерой сгорания с поршнем в верхней мертвой точке. Это отношение можно выразить в формуле:
CV – объем цилиндра;
CCV – объем камеры сгорания.
Естественно, CV – это объем двигателя в см?, разделенный на количество цилиндров. Однако вычислить CCV не так просто. Это объем камеры сгорания, объем оставшегося над поршнем пространства, когда он находится в верхней мертвой точке, плюс объем дополнительный высоты цилиндра, образованной толщиной прокладки головки блока цилиндров, плюс объем вогнутости поршня, если используются поршни с вогнутым днищем, или минус объем выпуклости, если используются поршни с выпуклым днищем.
Если мы знаем, какую степень сжатия хотим получить, мы можем рассчитать объем CCV, чтобы обеспечить эту степень сжатия, используя формулу:
Предположим, двигатель оснащен цилиндрами объемом 500см3 и нам необходимо получить степень сжатия 9,2:1. В таком случае получим:
Чтобы определить точное значение CCV в нашем двигателе, предварительно необходимо измерить объем камеры сгорания при помощи бюретки, заполненной жидким воском или водой (см. рис. 5.6). Стоит отметить, что все камеры сгорания должны иметь одинаковый объем, отклонение взначении степени сжатия не должно превышать 0,1 от цилиндра к цилиндру. Это означает, что, если поршни расположены на одном уровне под верхней частью блока цилиндров в верхней мертвой точке, в двигателе с цилиндрами объемом 300 см3 отклонение может составлять не более 0,5 см3 между самой большой и самой маленькой камерами сгорания. Для цилиндров объемом 500 см3 разница в объеме самой большой и самой маленькой камер сгорания не должна превышать 0,8 см3, а для цилиндров объемом 700 см3 – 1 см3. Но для двигателей гоночных автомобилей все расчеты должны быть более точными. Лично я допускаю отклонения до 0,1 см3, кроме случаев, когда в двигателе происходила детонация (часто из-за проблем с системой охлаждения). В таком случае необходимо сократить степень сжатия в детонирующем цилиндре посредством модификации камеры сгорания и днища поршня.
Рис. 5.6. Измерение объема камеры сгорания.
Если двигатель оснащен поршнями с вогнутым или выпуклым днищем, а также если на поршнях есть срезы под клапаны, необходимо измерить увеличение или уменьшение объема. Например, если диаметр цилиндра составляет 90мм, а край днища поршня расположен на расстоянии 6мм от верхней части блока цилиндров, используйте следующую формулу:
П = 3,1416;
D – диаметр цилиндра, мм;
H – расстояние между днищем поршня и блоком цилиндров, мм.
В таком случае объем будет составлять: