Наши книги можно приобрести по карточкам єПідтримка!

Содержание

Предисловие

Знакомство с технологией наддува

Уроки истории

Турбокомпрессоры: прошлое и настоящее

Закись азота: от истоков до наших дней

Наддув: теория и основные принципы

Что необходимо знать о турбокомпрессорах

Управление давлением наддува турбокомпрессора

Стратегия предотвращения турбоям в турбокомпрессорах

Что необходимо знать о турбокомпрессорах

Охлаждение впускного заряда

Впрыск воды и другие альтернативные решения

Топливо и топливные присадки

Система подачи топлива

Система впуска воздуха

Впрыск закиси азота

Система выпуска отработанных газов

Процесс горения и система зажигания

Система управления двигателем

Повышение износостойкости двигателя

Система смазки

Система охлаждения

Модификация заводского двигателя с наддувом

Проверка теории на практике

И еще несколько размышлений

Только оригинальные руководства
Доступно сразу после оплаты
Полное соответствие бумажным изданиям
100% защита ваших оплат
(9)

Расчет степени сжатия

Обычно пользователи нашего сайта находят эту страницу по следующим запросам:
инерционный наддув, давление наддува турбины, электрический наддув двигателя, механический наддув двигателя, технические характеристики автомобиля, дизельное топливо, степени сжатия, зона завихрения

Расчет степени сжатия

Стоит также учитывать, что речь идет о реальной степени сжатия. Некоторые производители работают с достаточно маленькими допусками, поэтому степень сжатия их двигателей не варьируется более чем на 0,15 от указанного значения. К сожалению, многие автомобили демонстрируют значительно большие различия в значениях, в некоторых случаях отклонения могут составлять 0,3 и даже больше. Следовательно, двигатель, который, по вашему мнению, имеет степень сжатия 9,5:1, может на самом деле иметь степень сжатия 9,8:1. Поэтому, вместо того чтобы рассчитывать давление наддува на основании линии 9,0:1, вам необходимо использовать линию 10,2:1. Учтите, что я не рекомендую использовать давление наддува выше 9,5:1. Нижняя линия на графике показывает подходящие значения давления наддува, если вы решите установить нагнетатель на двигатель в заводском исполнении с высокой степенью сжатия.

Действительное давление сжатия – это отношение между общим объемом цилиндра, прокладки головки блока цилиндров и камеры сгорания споршнем в нижней мертвой точке и объема, содержащегося в пространстве между днищем поршня, прокладкой головки блока цилиндров икамерой сгорания с поршнем в верхней мертвой точке. Это отношение можно выразить в формуле:

Расчет степени сжатия

CV – объем цилиндра;

CCV – объем камеры сгорания.

Естественно, CV – это объем двигателя в см?, разделенный на количество цилиндров. Однако вычислить CCV не так просто. Это объем камеры сгорания, объем оставшегося над поршнем пространства, когда он находится в верхней мертвой точке, плюс объем дополнительный высоты цилиндра, образованной толщиной прокладки головки блока цилиндров, плюс объем вогнутости поршня, если используются поршни с вогнутым днищем, или минус объем выпуклости, если используются поршни с выпуклым днищем.

Если мы знаем, какую степень сжатия хотим получить, мы можем рассчитать объем CCV, чтобы обеспечить эту степень сжатия, используя формулу:

Расчет степени сжатия

Предположим, двигатель оснащен цилиндрами объемом 500см3 и нам необходимо получить степень сжатия 9,2:1. В таком случае получим:

Расчет степени сжатия

Чтобы определить точное значение CCV в нашем двигателе, предварительно необходимо измерить объем камеры сгорания при помощи бюретки, заполненной жидким воском или водой (см. рис. 5.6). Стоит отметить, что все камеры сгорания должны иметь одинаковый объем, отклонение взначении степени сжатия не должно превышать 0,1 от цилиндра к цилиндру. Это означает, что, если поршни расположены на одном уровне под верхней частью блока цилиндров в верхней мертвой точке, в двигателе с цилиндрами объемом 300 см3 отклонение может составлять не более 0,5 см3 между самой большой и самой маленькой камерами сгорания. Для цилиндров объемом 500 см3 разница в объеме самой большой и самой маленькой камер сгорания не должна превышать 0,8 см3, а для цилиндров объемом 700 см3 – 1 см3. Но для двигателей гоночных автомобилей все расчеты должны быть более точными. Лично я допускаю отклонения до 0,1 см3, кроме случаев, когда в двигателе происходила детонация (часто из-за проблем с системой охлаждения). В таком случае необходимо сократить степень сжатия в детонирующем цилиндре посредством модификации камеры сгорания и днища поршня.

Расчет степени сжатия

Рис. 5.6. Измерение объема камеры сгорания.

Если двигатель оснащен поршнями с вогнутым или выпуклым днищем, а также если на поршнях есть срезы под клапаны, необходимо измерить увеличение или уменьшение объема. Например, если диаметр цилиндра составляет 90мм, а край днища поршня расположен на расстоянии 6мм от верхней части блока цилиндров, используйте следующую формулу:

П = 3,1416;

D – диаметр цилиндра, мм;

H – расстояние между днищем поршня и блоком цилиндров, мм.

В таком случае объем будет составлять:

Расчет степени сжатия

Если при измерении объема при помощи бюретки вы получили значение 27,2 см3 (см. рис. 5.7), значит, выступ в верхней части поршня сокращает CCV на 11 см3 (38,2 – 27,2 = 11).

Расчет степени сжатия

Рис. 5.7. Измерение объема поршня с выпуклым днищем.

Если поршень в данном случае был с вогнутым днищем, так как при измерении бюреткой мы получили значение 52,7 см3, объем вогнутости увеличивал CCV на 14,5 см3 (52,7 – 38,2 = 4,5).

Формула, приведенная выше, также используется для определения объема прокладки головки блока цилиндров посредством измерения использованной, то есть сжатой прокладки. Если поршни имеют плоское днище и в верхней мертвой точке находятся под верхней частью блока цилиндров, используется та же формула для определения объема.