INTRODUCTION

SAFETY ALERT SYMBOL AND HEAD-LINE NOTATIONS

In this manual, the following safety alert symbol and signal words are used to alert the reader to the potential for personal injury or machine damage.

This is the safety alert symbol. When you see this symbol, be alert to the potential for personal injury.

Never fail to follow the safety instructions prescribed along with the safety alert symbol.

The safety alert symbol is also used to draw attention to component/part weights.

To avoid injury and damage, be sure to use appropriate lifting techniques and equipment when lifting heavy parts.

- CAUTION: indicated a potentially hazardous situation which could, if not avoided, result in personal injury or death.
- IMPORTANT: indicates a situation which, if not avoided, could result in damage to the machine.
- NOTE: indicates supplementary technical information or know-how.

UNITS USED

 SI Units (International System of Units) are used in this manual.

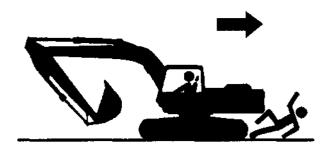
MKSA system units and English units are also indicated in parentheses just behind SI units.

Example: 24.5 MPa (250 kgf/cm², 3 560 psi)

A table for conversion from SI units to other system units is shown below for reference purposes.

Quantity	To Convert		Multiply	Oceantity	To Convert		Multiply
	From	Into	Ву	Quantity	From	Into	Ву
Length	mm	in	0.039 37	Pressure	MPa	kgf/cm²	10.197
Longin	mm ft 0.003 281	11000010	MPa	psi	145.0		
Volume	L	US gal	0.264 2	Power	kW	PS	1.360
	L	US qt	1.057		kW	HP	1.341
	m³	yd³	1.308	Temperature	ô	°F	°C×1.8+32
Weight	kg	lþ	2.205	Velocity	km/h	mph	0.621 4
Force	N	kgf	0.101 97	Velocity	min ⁻¹	rpm	1.0
	N	lbf	0.224 8	Flow rate	L/min	US gpm	0.264 2
Torque	N⋅m	kgf·m	1.019 7		mL/rev	cc/rev	1.0
	N·m	lbf∙ft	0.737 5				

USE HANDHOLDS AND STEPS


- · Falling is one of the major causes of personal injury.
 - When getting on and off the machine, always maintain a three-point contact with the steps and handrails, and face the machine.
 - · Do not use any controls as handholds.
 - Never jump on or off the machine. Never mount or dismount a moving machine.
 - Be careful of slippery conditions on platforms, steps, and handrails when getting on or off the machine.

SA-006

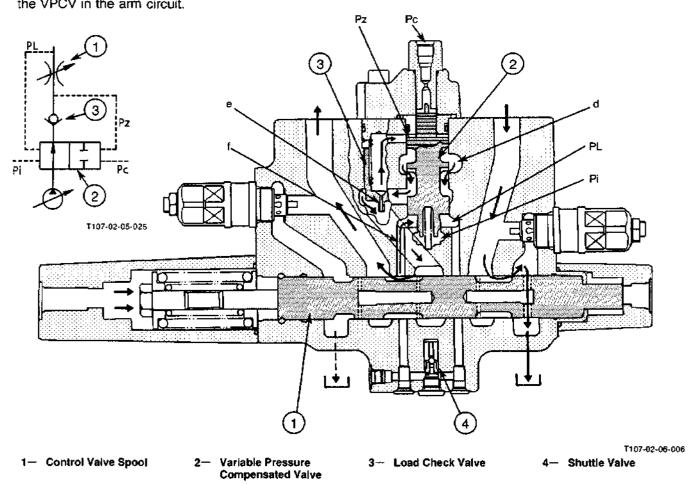
PRECAUTIONS FOR MACHINE OPERATION

- Never lubricate or service the machine while it is moving.
- If a maintenance procedure must be performed with the engine running, do not leave the machine unattended.
- Take precautions when operating the machine
 - · Be sure to start the engine only while seated in the operator's seat.
 - · Always be alert for bystanders moving into the work area. Use the horn or other signal to warn bystanders before starting the engine and before moving the machine.
 - Machines experiencing trouble may move in unexpected ways. Be sure to operate the machine slowly while observing machine movements closely.
 - Use a signal person when backing up, if your view is obstructed. Always keep the signal person in view.
 - · Learn the meaning of all flags, signs, and markings used on the job, and confirm who has the responsibility for signaling.
- Be sure to remain seated in the operator's seat while operating the machine.
- Keep riders off the machine. Only allow the operator on the machine.

SA-007

UPPERSTRUCTURE / Control Valve

VARIABLE PRESSURE COMPENSATED VALVE (VPCV)


The VPCV is an oil flow regulator valve which functions to properly deliver the pump oil flow to each actuator. This valve is located on the upstream side of control valve spool (1) in the control valve.

The VPCV reduces pump oil flow when receiving pilot oil pressures Pz and Pc, and increases it when receiving pilot oil pressures PL and Pi at notch section (d).

- Pilot oil pressure Pz is routed to VPCV (2) after passing load check valve (3) via passage (e) to reduce the pump oil flow.
- Pilot oil pressure PL is routed to VPCV (2) through passage (f) when control valve spool (1) is operated to increase the pump oil flow. At the same time, pilot oil pressure PL is routed to the differential pressure sensor (DP sensor), unloading valve, and unloading relief valve via shuttle valve (4). When a combined operation, bucket and arm for example, is made, and load pressure in the arm cylinder is lower than that in the bucket cylinder, a larger quantity of pressure oil passes the VPCV in the arm circuit.

Then differential oil pressure between PZ and PL in the arm circuit becomes greater than in the bucket circuit, closing the VPCV in the arm circuit until differential oil pressures between PZ and PL in both arm and bucket circuits become equal. Accordingly, pressure oil can be supplied equally to both arm and bucket cylinders.

- Pilot oil pressure Pc is routed to VPCV (2) from the proportional solenoid valve in the solenoid valve assembly to reduce the pump oil flow. The Pc pressure is controlled by signals sent out from the PVC so as to meet the selected work mode, or working conditions of the combined operation at hand.
- Constant pilot oil pressure Pi is routed to VPCV
 (2) from the reducing valve in the solenoid valve assembly to increase the pump oil flow.

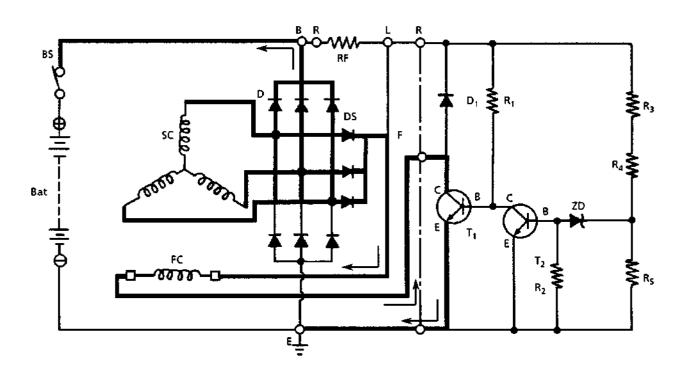
ELECTRICAL SYSTEM / Main Circuit

OPERATION OF THE REGULATOR

The figure below illustrates the circuitry between the alternator and the regulator.

The alternator incorporates a field coil (FC / rotor coil), a stator coil (SC) and a diode (D).

The regulator contains a transistor (T), a diode (D), and zener diode (ZD). Terminal B of the alternator sends current from the alternator to the regulator in this way:


$$B \rightarrow RF \rightarrow R \rightarrow R1 \rightarrow Base$$
 (B) of Transistor T1
B $\rightarrow RF \rightarrow FC \rightarrow F \rightarrow Collector$ (C) of Transistor T1

By turning the key switch ON, current flows to the base (B) of transistor T1, electrifying the collector (C) and the emitter (E) of transistor T1, and then the current passes to the field coil (FC). In this condition, the rotation of the alternator generates voltage.

Power Generation

Electrical power is generated as follows:

When the alternator starts rotation, the voltage between R-E is increased from the initial excitation level, increasing the flow of current to the field coil. This further raises the voltage between R-E, which changes from battery excitation to self-excitation, and begins charging the battery.

T107-04-04-006

T04-02-10A 9503

ELECTRICAL SYSTEM / Inspection and Maintenance

LIST OF PVC RELATING FAULT CODES

Fault Code	Trouble	Corrective Action		
17 18 19	Failure (type-17) of PVC Failure (type-18) of PVC Failure (type-19) of PVC	Retry diagnostic procedure A Replace PVC if engine stops or working speed is abnormal		
20	Signal from EC is not transmitted to PVC	Retry diagnostic procedure B Check harness Replace PVC or EC if abnormal speed sensing operation is found		
21	Failure (type-21) of PVC	Retry diagnostic procedure B Replace PVC		
22	Abnormal pump control	Retry diagnostic procedure B Harness check Check pump displacement solenoid valve Check pump displacement angle sensor Check PVC		
25 26	Short-circuit of DP sensor and/or harness Disconnected DP sensor and/or harness	Retry diagnostic procedure B Check DP sensor harness Replace DP sensor		
27 28	Short-circuit of P sensor and/or harness Disconnected P sensor and/or harness	Retry diagnostic procedure B Check P sensor harness Replace P sensor		
29 30	Short-circuit of A sensor and/or harness Disconnected A sensor and/or harness	Retry diagnostic procedure B Check A sensor harness Replace A sensor		
31 32	Disconnected T sensor and/or harness Short-circuit of T sensor and/or harness	Retry diagnostic procedure B Check T sensor harness Replace T sensor		
33 34	Disconnected BpiP sensor and/or harness Short-circuit of BpiP sensor and/or harness	Retry diagnostic procedure B Check BpiP sensor harness Replace BpiP sensor		
35 36	Disconnected ABP sensor and/or harness Short-circuit of ABP sensor and/or harness	Retry diagnostic procedure B Check ABP sensor harness Replace ABP sensor		

BpiP: Boom raise pilot pressure sensor

ABP: Arm bottom pressure sensor

OPERATIONAL PERFORMANCE / Basic Performance Check

Check points

This travel and arm roll-in combined operation is a simulation of soft ground extrication. The arm cylinder force while the tracks spin is decided by the pump delivery pressure. However, measured values are liable to be changed by the hydraulic oil temperature.

If any measured value does not meet standards, refer to the table below for corrective action.

Problems	Causes	Check and repair
Traveling movement is unstable.	1-1 Aerated pipings between solenoid valve and control valve.	Loosen pipings to release air.
Althrough travel PC pressure raises to its standard, pump	2-1 Travel PC pressure (SE port output) too low.	Adjust or replace solenoid valve.
delivery pressure is too low.	2-2 Travel variable pressure compensated valve is failed so that flow rate for travel cannot be decreased.	Disassemble to clean or replace variable pressure compensated valve.
Travel PC pressure does raise to its standard.	3-1 When pump differential pressure is larger than standard, travel PC pressure cannot be raised.	Replace unloading valve. Disassemble and clean travel shuttle valve. Replace DP sensor.
Travel motor cannot changeover to its maximum angle position so that travel	4-1 Travel changeover pressure setting too high.	Replace unloading valve. Disassemble and clean travel shuttle valve. Replace DP sensor.
speed cannot be decreased.	4-2 Travel changeover pressure setting normal.	Measure changeover signal at travel motor. Replace or adjust solenoid valve.

TROUBLESHOOTING / Troubleshooting A

Harness Check Between PVC and A Sensor

- Turn the key switch OFF, and remove the connector of the A sensor.
- Turn the key switch ON and measure the voltage between terminal No. 1 (+ side) and terminal No. 3 (- side) of the harness side connector.

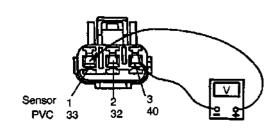
Normal value: 5 ± 0.5 V

If the voltage is within the normal value range, both harnesses between terminal No. 33 of the PVC and terminal No. 1 of the A sensor and between terminal No. 40 of the PVC and terminal No. 3 of the A sensor are normal.

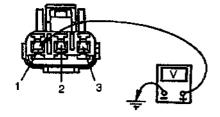
- When the above mentioned voltage is not normal, check which harness is defective.
- 3-1. Turn the key switch ON and measure the voltage between terminal No.1 of the harness side connector and vehicle (ground).

Normal value: 5 ± 0.5 V

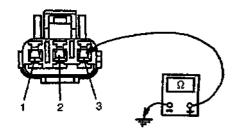
If the voltage is within the normal value range, the harness between terminal No. 33 of the PVC and terminal No. 1 of the A sensor is normal.

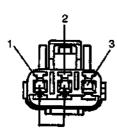

3-2. If the voltage measured in the step 3-1 is normal, check the continuity between terminal No. 3 of the harness side connector and vehicle (ground).

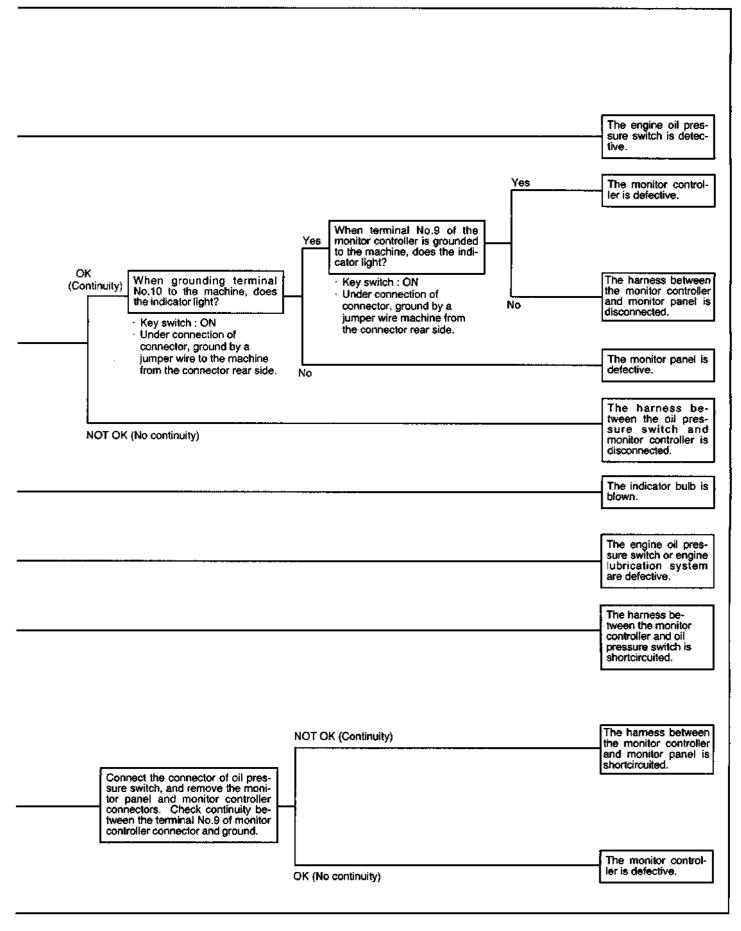
If continuity exists, the harness between terminal No. 40 of the PVC and terminal No. 3 of the A sensor is normal.

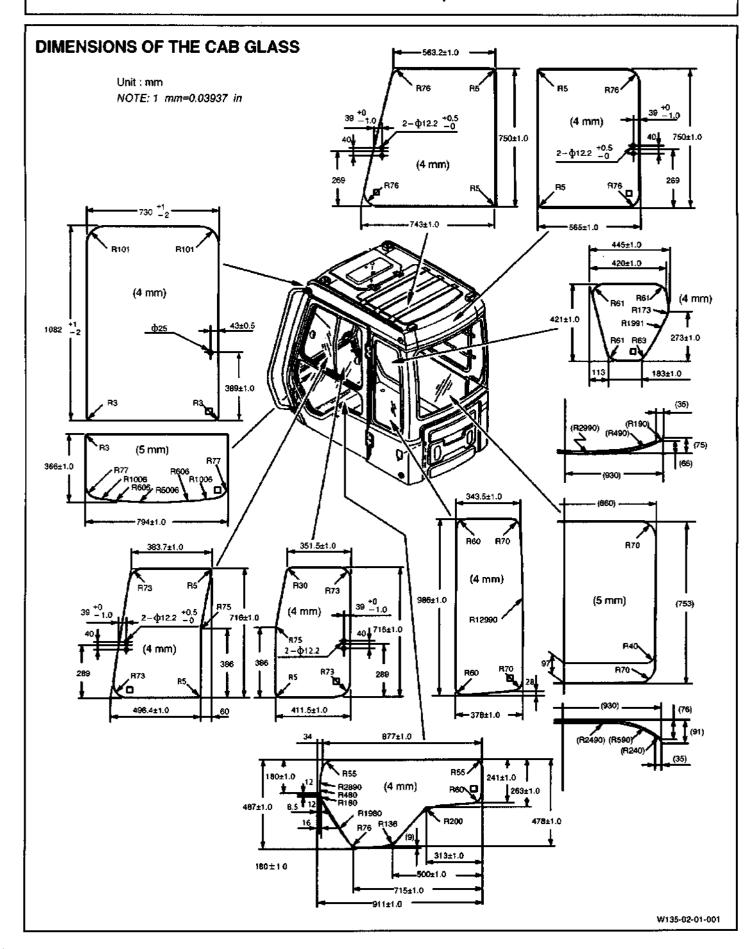

4. Attach the Dr. EX to the machine and short-circuit terminals No. 1 and No. 2 of the harness side connector with a clip, or jumper wire. At that time, if the monitor display of the A sensor indicates the maximum value (24 deg.), the harness between terminal No. 32 of the PVC

and terminal No. 2 of the A sensor is normal.


IMPORTANT: When short-circuiting terminals No. 1 and No. 2, a care shall be taken not to short-circuit the clip to the machine body.

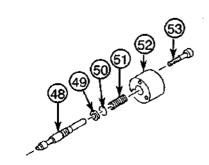

T107-07-03-010


T107-07-03-011


T107-07-03-012

T107-07-03-013

UPPERSTRUCTURE / Cab

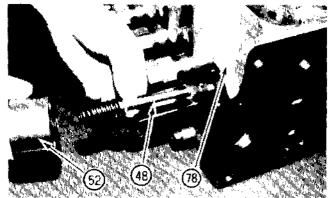


UPPERSTRUCTURE / Control Valve

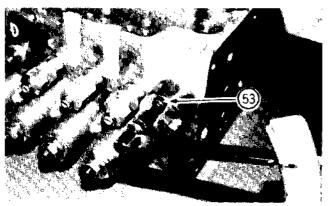
System Pressure Regulator (Unloading Valve)

17. Install spring seat (49) and spring (51) onto spool (48).

Apply a film of grease to O-ring (50), then install it to cap (52).



W107-02-05-106


Apply a film of hydraulic oil to spool (48), then install it into housing (78).
 Tighten cap (52) with bolts (53).

____ : 8 mm

= :61 N·m (6.2 kgf·m, 45 lbf·ft)

W107-02-05-107

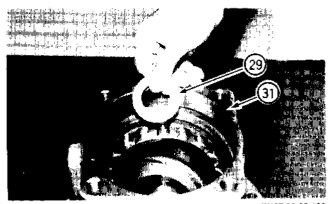
W107-02-05-108

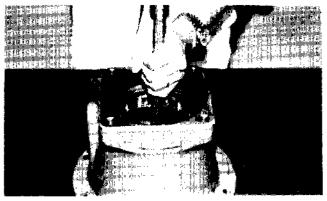
Shuttle Valve

19. Install O-ring to plug (93), then install it into housing (78).

Apply a film of hydraulic oil to shuttle (94), then install it into housing (78).

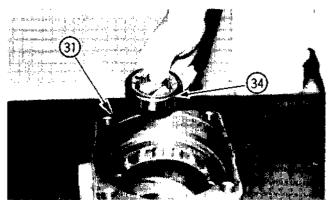
:5 mm


: 14.5 N·m (1.5 kgf·m, 11 lbf·ft)

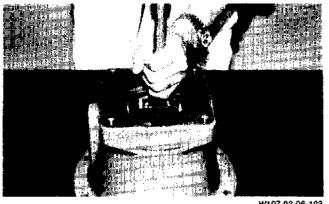

UPPERSTRUCTURE / Swing Device

3. Turn over casing (31) and put plate (29) in it.
Install oil seal (30) into casing (31) using tool (ST 2564).

IMPORTANT: Take care of the fitting direction of the oil seal.



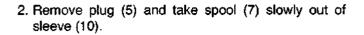
W107-02-06-100



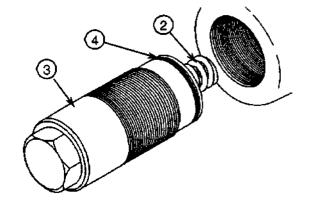
W107-02-06-101

4. Install the outer race of bearing (34) to casing (31) using tool (ST 2565).

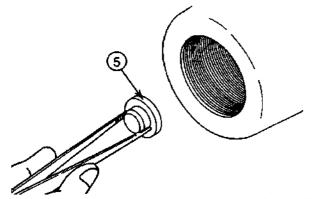
W107-02-06-102

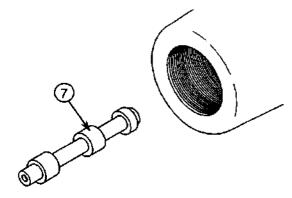

W107-02-06-103

UPPERSTRUCTURE / Solenoid Valve


Disassemble Reducing Valve

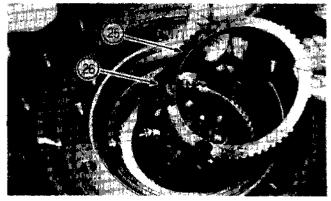
1. Loosen plug (3) and remove shim (1), spring (2) and O-ring (4).


IMPORTANT: When removing plug (3), hold spring (2) with finger to prevent shim (1) and spring (2) from coming out.


IMPORTANT: Be careful not to damage the corner edge inside sleeve (10) when removing spool (7).

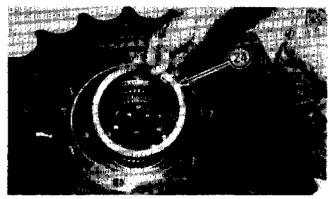
W107-02-11-059

W107-02-11-061



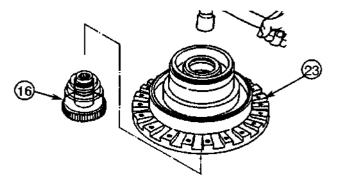
W107-02-11-062

UNDERCARRIAGE / Travel Device

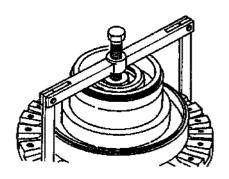

14. Remove plates (25) and friction plates (26) from housing (23).

NOTE: Turn over housing (23), then tap with plastic harmer to remove spacer (24), plates (25), and friction plates (26) from housing (23).

V107-03-02-111

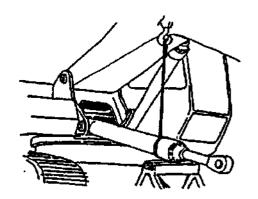

15. Remove spacer (24).

W107-03-02-113


(When disassemble reduction gear)

16. Turn over housing (23), then tap with plastic hammer to remove drive disc (16) assembly.

W107-03-02-114

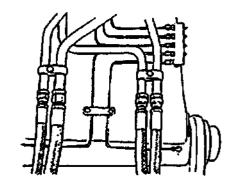

If necessary, put a plate onto spline shaft, then pull out drive disc (16) assembly, using a puller, as illustrated.

W107-03-02-115

FRONT ATTACHMENT / Front Attachment

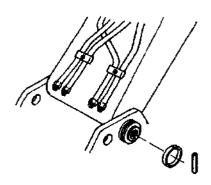
Lower right boom cylinder to put it on stand. Remove other boom cylinder following the same procedure.

W105-04-01-005


CAUTION: Escaping fluid under pressure can penetrate the skin, causing serious injury. Avoid the hazard by relieving pressure before disconnecting hydraulic or other lines.

Hydraulic oil may be hot just after operation. Hot hydraulic oil may spout, possibly causing severe burns. Be sure to wait for oil to cool before starting work.

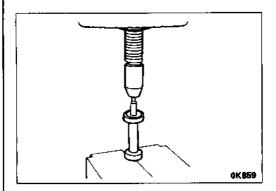
- Stop the engine. Move all control levers to release pressure remaining in the system. Push the air release valve on top of the hydraulic oil tank to release any remaining pressure.
- Disconnect 4 hoses of arm cylinder and bucket cylinder.
 Close all openings with plug to keep clean.



📞 : 36 mm, 41 mm

W105-04-01-006

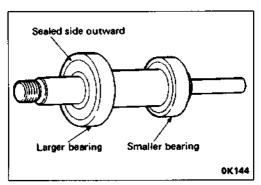
8. Remove ring and pin from the boom foot pin.


W105-04-01-021

ENGINE / Cooling system

INSPECTION AND REPAIR

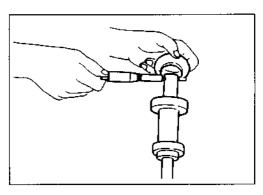
Make the necessary adjustments, repairs, and part replacements if excessive wear or damage is discovered during inspection.



Bearing Replacement

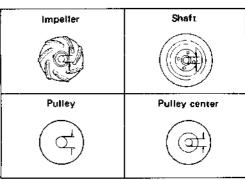
Removal:

Use a bench press to remove two bearings and the spacer.



Installation:

Use a bench press to install two bearings and the spacer



Single bearing is used for 4BD1 and 4BD1T.

Use a micrometer to check the fitness at the three points shown in the illustrations.

		mm(in)
	Shaft to Pulley Center Fitness	0.02 — 0.06 (0.0008 — 0.0024)
Fitness	Shaft to Impeller Fitness	0.07 — 0.11 (0.0028 — 0.0043)
	Pulley Center to Pulley Fitness	0.14 (0.0055) or less