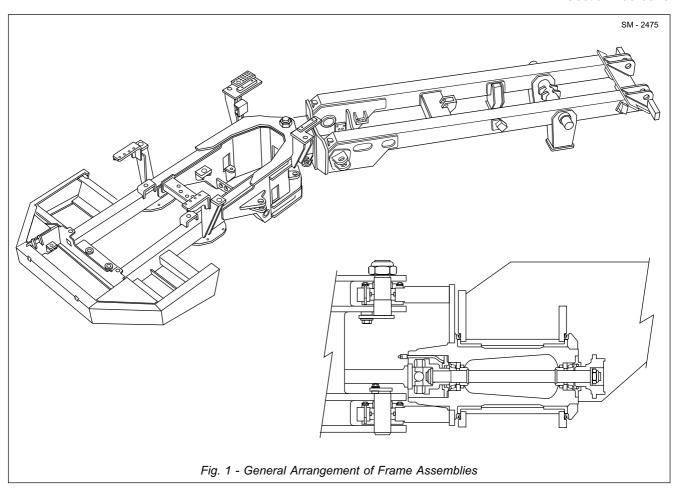
TABLE OF CONTENTS

Section No.	Description	SM No.	
000	GENERAL INFORMATION		
0000	Technical Data - TA30		
0010	Welding Procedure		
100	CHASSIS		
0010	Frames		
0020	Articulation and Oscillation Pivot - Pre May 2000 Production	1960 Rev 1975	
0020	Articulation and Oscillation Pivot - From May 2000 Production	1988 Rev	
0040	Hood and Mounting	1984 Rev	
0070	Fenders and Mounting	1963	
110	ENGINE		
0030	Engine and Mounting	1964	
0040	Kysor DST Fan	1974	
0050	Air Cleaner	1958	
120	TRANSMISSION		
0010	Transmission and Mounting	1965	
130	DRIVELINES		
0010	Front and Rear Drivelines	1534 Rev	
140	FRONT AXLE GROUP		
0020	Axle Group (Hub) (Refer to Section 160-0030)	-	
0040	Wheel Rim and Tyre (Refer to Section 160-0050)	-	
0060	Differential Drive Head (Refer to Section 160-0020)	-	
150	CENTRE AXLE		
0020	Differential Drive Head	1971	
160	REAR AXLE GROUP		
0020	Differential Drive Head	1969	
0030	Axle Group (Hub)	1968	
0050	Wheel Rim and Tyre	1970	
165	BRAKE PARTS		
0010	Brake Parts - Rear	1962	
0020	Brake Parts - Front	1961	
170	PARKING BRAKE		
0010	Parking Brake and Mounting	1967	
180	SUSPENSION SYSTEM		
0020	Front Suspension	1979	
0021	Air Spring	1480 1481	
0022	Levelling Valve		
0040	Rear Suspension	1978	
190	ELECTRICAL SYSTEM		
0000	Circuit Diagrams	1946 Rev	
0270	Switches and Sensors	1959 Rev 7	
200	FUEL SYSTEM		

SM 1935 Rev 3 10-02


TABLE OF CONTENTS

Section No.	Description	SM No.
210	COOLING SYSTEM	
0000	Cooling System	1983
0040	Radiator, Header Tank and Mounting	1987
0060	Transmission Oil Cooler	1977
0100	Hydraulic Oil Cooler	1976
220	STEERING SYSTEM	
0000	Steering System Schematic	1943
0050	Steering Pump (Refer to Section 230-0050)	_
0090	Steering Valve	1986 Rev 1
0105	Priority Valve	1947
0120	Steering Cylinder	1955
0140	Emergency Valve	1944
230	BODY SYSTEM	
0000	Body System Schematic	1949 Rev 1
0040	Hydraulic Tank	1950
0050	Main Hydraulic Pump	1951
0060	Body Control Valve	1952
0081	Body Control Joystick	1953 Rev 2
0121	Pilot Supply Valve	1954
0130	Body Cylinder	1956
250	BRAKING SYSTEM	
0000	Air Braking System Schematic	1948
0000	Hydraulic Braking System Schematic	1982
0070	Treadle Valve	1939
0170	Air Tanks and Mounting	1941
0190	Park Emergency Control Valve	1940
0200	Air Drier	1985 Rev
0260	Pressure Converter	1508
0270	Air Breather	1509
0280	Relay Emergency Valve	1945
0290	Pressure Protection Valve (4 way)	1938
260	OPERATORS COMPARTMENT	
0010	Cab and Mounting	1957
0090	Driver Seat and Mounting	1981
0130	Air Conditioning	1966
270	BODY	
0010	Body and Mounting	1980
300	MISCELLANEOUS	
0020	Lubrication System	1972
0070	Service Tools	1973
0800	Axle Bolt and Nut Torque Specifications	1521
0800	Standard Bolt and Nut Torque Specifications	1238
0090	Unit Storage	1239

* * * *

CHASSIS - Frames

Section 100-0010

DESCRIPTION

The chassis consists of two separate frame assemblies which provide the articulation of the unit. The front and rear frames are constructed of all welded high-grade steel fabrications with rectangular box section beams forming main, side and cross members. The frames are coupled to provide 45° articulation to each side as well as oscillation.

The front frame is fabricated to form a rigid structure which carries the cab, power train and suspension system.

The rear frame is fabricated to form a rigid structure which carries the body, body hydraulics, suspension and rear drive axles.

Oscillation between the front and rear frames is provided by a large diameter cylindrical coupling carried on nylon bushes located in the rear frame. Longitudinal shocks are absorbed by the thrust faces of the nylon bushes. A large thrust nut, which is threaded to the end of the coupling and locked to the

frame, secures the coupling in position. Wear on the thrust faces of the bushes is compensated by tightening this thrust nut.

INSPECTION AND MAINTENANCE

Inspection

Inspect the frames and attached parts at intervals not exceeding 250 hours for cracked or broken welds and bending of the frame. Any defects found should be repaired before they progress into major failures.

Straightening

Hydraulic straightening or aligning equipment should be used to straighten bent or twisted frames whenever possible. However, if heat must be applied, never heat the metal beyond a dull, cherry red colour, as too much heat will weaken the metal. When it is necessary to heat the metal, apply heat uniformly over the area to be straightened and protect the heated surface from sudden cooling. Frame parts that cannot be straightened should be renewed.

SM 1960 Rev 1 4-02

Section 100-0020

and use lifting equipment to pull the rear frame away from the front frame. After moving, block the rear frame and wheels securely.

12. Mark all bearing retainers (5, 11, 17 & 21) to aid in 'Installation'.

Note: Retainers (5, 11, 17 & 21) are not interchangeable.

- 13. Remove bolts (13), lockwashers (14), retainers (5, 11, 17 & 21) and upper and lower shims (7, 8 & 9).
- 14. Remove and discard 'O' rings (4, 10 & 18). Remove spacer (52) noting orientation to aid in 'Installation'.
- 15. Remove and tag all bearings (6) to aid in 'Installation', where appropriate.

Note: Never interchange cups or cones between bearings.

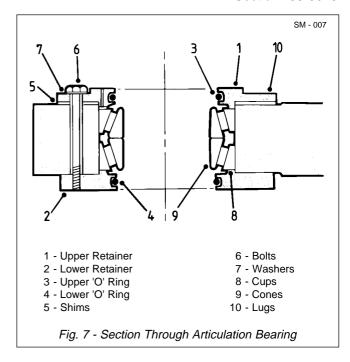
Inspection

Numbers in parentheses refer to Fig. 1.

- 1. Clean parts with a suitable solvent and let dry. DO NOT spin bearings with compressed air. Place bearings on clean surface, cover with lint free cloth and allow to dry.
- 2. Check articulation bearings (6) and pins (32 & 55) for wear or damage. Renew if required.

Installation

Numbers in parentheses refer to Fig. 1, unless otherwise specified.

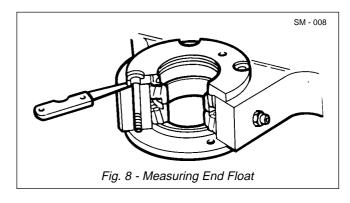


To prevent personal injury and property damage, make sure blocking or lifting equipment is properly secured and of adequate capacity to do the job safely.

Note: Two bearings are installed on EACH articulation point. Each bearing comprises a cup and a cone and are installed into the articulation point with the cones 'back to back'. Refer to Fig. 7.

Note: Never interchange cups or cones between bearings.

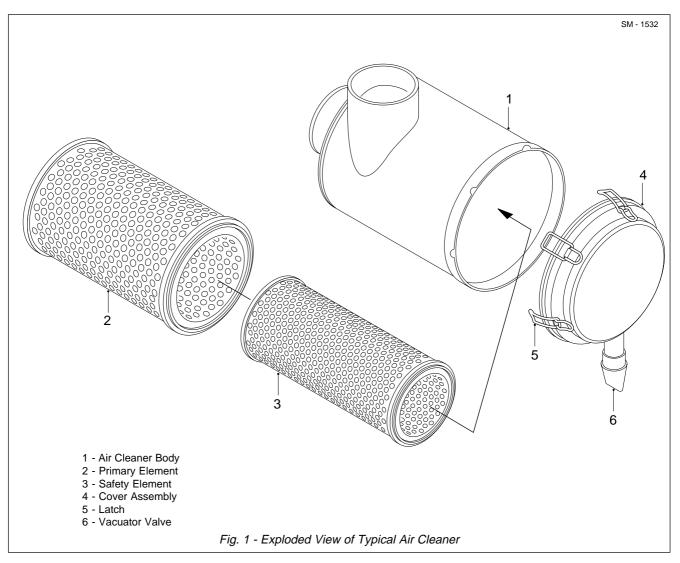
1. Insert both bearing cups and cones into housing so



that bearing cones are back to back and position retainer (11), for top articulation bearing, and retainer (21), for bottom articulation bearing on underside of bearing housing. Make sure that bearings are prepacked with grease including end faces and faces on bearing cups.

- 2. Install top retainer (5), for top articulation bearing, and retainer (21), for bottom articulation bearing.
- 3. Lubricate bolts (13 for top and 33 for bottom) and install along with washers (14). Torque tighten bolts (13 & 33) to 27 Nm (20 lbf ft).
- 4. Use feeler gauges to measure end float and record value. Refer to Fig. 8.

Note: End float is equal to the sum of the clearances between both retainers and the lug.


5. Select shims to total value of -0.07 to +0.02 mm (-0.003 to +0.001 in) of that recorded at Step 4.

SM 1988 Rev 1 11-00 7

ENGINE - Air Cleaner

Section 110-0050

DESCRIPTION AND OPERATION

Numbers in parentheses refer to Fig. 1.

The dual dry element air cleaner is remote mounted horizontally on the right hand fender of the machine. The air cleaner prolongs engine life by removing grit, dust and water from the air as it enters the engine. Grit and dust, combined with engine oil, forms a highly abrasive compound which can destroy the engine in a comparatively short period of time.

A rubber vacuator valve (6) attached to end cover (1) in a downward position, ejects grit, dust and water while the engine is running. Vacuator valve (6) minimizes the need for daily servicing. Even though vacuator valve (6) is normally under a slight vacuum when the engine is running, pulsing of the vacuum opens and closes the rubber valve, expelling dust and water as they collect. When the engine is stopped, vacuator valve (6) opens and expels any accumulated grit, dust or water.

A mechanical air restriction gauge (16, Fig. 2) is mounted on the air cleaner body and shows when the system air flow is being restricted. A red band gradually rises in the gauge window as air restriction increases. The red band is locked when maximum allowable restriction is reached. When the red band locks at the top of the gauge window, primary filter element (2) should be serviced. Air restriction gauge (16, Fig. 2) should be reset by pushing the button on the gauge, holding it for several seconds and then releasing it.

While air restriction gauge (16, Fig. 2) indicates the need for servicing, it does not give as precise a measurement as a water manometer or vacuum gauge. Refer to 'Measuring Air Restriction'.

Secondary (safety) element (3) is installed in air cleaner body (1) inside of primary element (2). This element increases the reliability of the air cleaner's

SM 1958 4-00 1

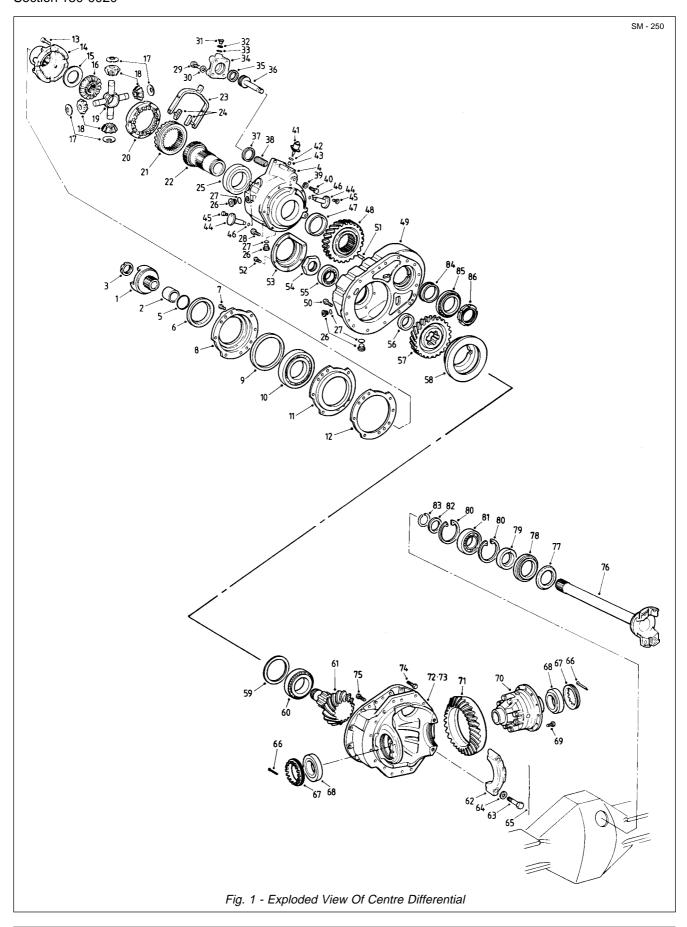
Transmission - Transmission and Mounting

Section 120-0010

Display during AEB-Mode - Continued			
Symbol	Meaning	Remarks	
ÛΤ	transmission oil temperature too high -> cool down transmission		
FT	transmission temperature not in defined range during calibration	Transmission stays in neutral, you have to restart the TCU (ignition off/on)	
FB	operating mode not NORMAL or transmission temperature sensor defective or storing of Calibrated values to EEPROM-has failed.	Transmission stays in neutral, you have to restart the TCU (ignition off/on)	
FO	Outputspeed_not_zero	Transmission stays in neutral, you have to restart the TCU (ignition off/on)	
FN	Shift lever not in Neutral position	Transmission stays in neutral, you have to restart the TCU (ignition off/on)	
FP	Parkbrake_not_applied	Transmission stays in neutral, you have to restart the TCU (ignition off/on)	
STOP	AEB - Starter was used incorrect or is defective	Transmission stays in neutral, you have to restart the TCU (ignition off/on)	

TAB	TABLE OF FAULT CODES				
Fault Code (hex)	MEANING OF CODE possible reason for fault detection	TCU reaction	Checks	Remarks	
11	LOGICAL ERROR AT GEAR RANGE SIGNAL TCU detected a wrong signal combination for the gear range •cable from shift lever to TCU is broken •cable is defective and is contacted to battery voltage or vehicle ground •shift lever is defective	TCU shifts transmission to neutral OP-Mode: transmission shutdown	check cables from TCU to shift lever check signal combinations of shift lever positions for gear range	Failure cannot be detected in systems with DW2/DW3 shift lever	
12	LOGICAL ERROR AT DIRECTION SELECT SIGNAL TCU detected a wrong signal combination for the direction •cable from shift lever to TCU is broken •cable is defective and is contacted to battery voltage or vehicle ground •shift lever is defective	TCU shifts transmission to neutral OP-Mode: transmission shutdown	•check cables from TCU to shift lever •check signal combinations of shift lever positions F-N-R		
23	S.C. TO BATTERY VOLTAGE AT LOAD SENSOR INPUT the measured voltage is too high: •cable is defective and is contacted to battery voltage •load sensor has an internal defect •connector pin is contacted to battery voltage	retarder function is affected TCU uses default load OP-Mode: normal	•check cable from TCU to sensor •check connectors •check load sensor sensor •check assembly tolerances of load sensor	Availability of retarder depends on default load	
24	s.c. to ground or o.c. at load sensor input the measured voltage is too low: •cable is defective and is contacted to vehicle ground •cable has no connection to TCU •load sensor has an internal defect •connector pin is contacted to vehicle ground or is broken	retarder function is affected TCU uses default load OP-Mode: normal	•check cable from TCU to sensor •check connectors •check load sensor sensor •check assembly tolerances of load sensor	Availability of retarder depends on default load	
25	S.C. TO BATTERY VOLTAGE OR O.C. AT TRANSMISSION SUMP TEMPERATURE SENSOR INPUT the measured voltage is too high: •cable is defective and is contacted to battery voltage •cable has no connection to TCU •temperature sensor has an internal defect •connector pin is contacted to battery voltage or is broken	no reaction, TCU uses default temp. OP-Mode: normal	•check cable from TCU to sensor •check connectors •check temperature sensor		

SM 1965 4-00 11


Transmission - Transmission and Mounting

Section 120-0010

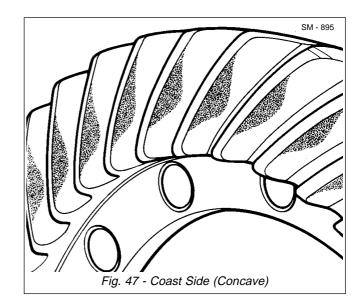
Fault Code (hex)	MEANING OF CODE possible reason for fault detection	TCU reaction	Checks	Remarks
D5	ERROR AT SWITCH 1 FOR VALVE POWER SUPPLY VPS1 TCU switched on VPS1 and measured VPS1 is off or TCU switched off VPS1 and measured VPS1 is still on •cable or connectors are defect and are contacted to battery voltage •cable or connectors are defect and are contacted to vehicle ground •permanent power supply KL30 missing •TCU has an internal defect	shift to neutral OP-Mode: TCU shutdown	•check fuse •check cables from gearbox to TCU •check connectors from gearbox to TCU •replace TCU	
D6	ERROR AT SWITCH 2 FOR VALVE POWER SUPPLY VPS2 TCU switched on VPS2 and measured VPS2 is off or TCU switched off VPS2 and measured VPS2 is still on •cable or connectors are defect and are contacted to battery voltage •cable or connectors are defect and are contacted to vehicle ground •permanent power supply KL30 missing •TCU has an internal defect	shift to neutral OP-Mode: TCU shutdown	•check fuse •check cables from gearbox to TCU •check connectors from gearbox to TCU •replace TCU	
Е3	S.C. TO BATTERY VOLTAGE AT DISPLAY OUTPUT TCU sends data to the display and measures always a high voltage level on the connector. •cable or connectors are defect and are contacted to battery voltage •display has an internal defect	no reaction OP-Mode: normal	•check cable from TCU to the display •check connectors at the display •change display	
E4	S.C. TO GROUND AT DISPLAY OUTPUT TCU sends data to the display and measures always a high voltage level on the connector. •cable or connectors are defect and are contacted to vehicle ground •display has an internal defect	no reaction OP-Mode: normal	•check cable from TCU to the display •check connectors at the display •change display	
F1	GENERAL EEPROM FAULT TCU cannot read non volatile memory •TCU is defective	no reaction OP-Mode: normal	•replace TCU	often shown together with fault code F2
F3	APPLICATION ERROR something of this application is wrong	transmission stay neutral OP-Mode: TCU shutdown	•replace TCU	fault occurs only if a test engineer did something wrong in the application of the vehicle
F5	CLUTCH FAILURE AEB was not able to adjust clutch filling parameters •One of the AEB-Values is out of limit	transmission stay neutral OP-Mode: TCU shutdown	•check clutch	TCU shows also the affected clutch on the Display
F6	CLUTCH ADJUSTMENT DATA LOST TCU was not able to read correct clutch adjustment parameters •interference during saving data on non volatile memory •TCU is brand new or from another vehicle	TCU shifts to neutral OP-Mode: limp home	•execute AEB	

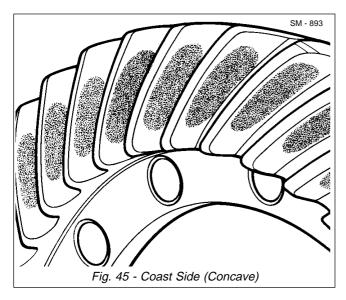
SM 1965 4-00 21

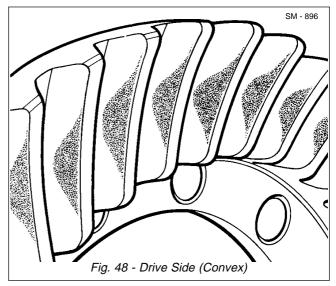
Section 150-0020

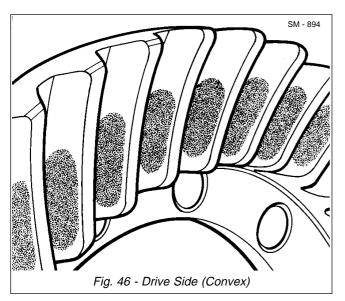
2 SM 1971 4-00

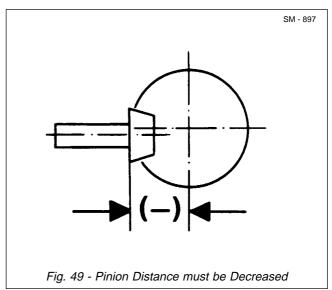
Rear Axle Group - Differential Drive Head

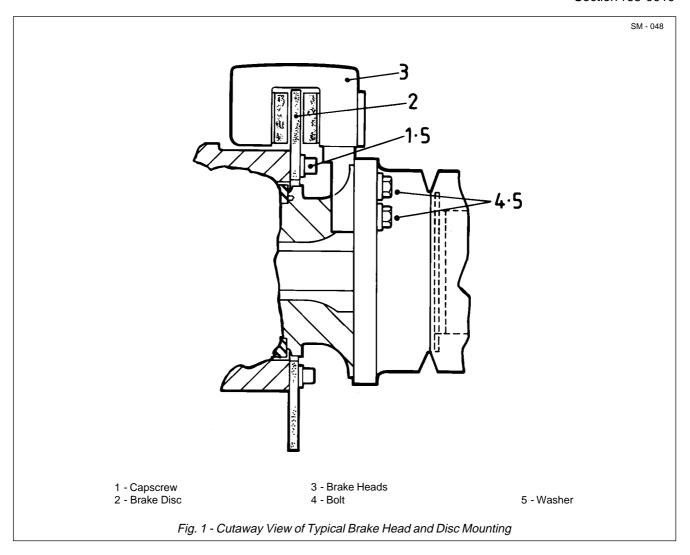

Section 160-0020


GLEASON GEAR TOOTH SYSTEM


Ideal tooth-contact pattern shown in Figs. 45 and 46 indicating the pinion distance is correct.


If the patterns obtained are the same as that shown in Figs. 47 and 48 then decrease the pinion distance (Fig. 49).


If the patterns obtained are the same as that shown in Figs. 50 and 51 then increase the pinion distance (Fig. 52).



16 SM 1969 4-00

BRAKE PARTS - Brake Parts - Rear

Section 165-0010

DESCRIPTION AND OPERATION

The service brakes are of the calliper disc-type. The calliper brake head is designed for use with hydraulic brake fluid. The head is bolted to a mounting plate on the axle housing. The disc is bolted to the wheel. There is one brake head and one brake disc at each wheel.

Each calliper brake head assembly consists of a torque plate, two brake pads, one on each side of the brake disc, and four brake pistons, two on each side of the brake disc.

The brake is actuated by hydraulic brake fluid entering the brake head through one of the bleeder ports. The piston bores on each side of the torque plate are interconnected by internal passages.

When the brake is actuated, the hydraulic pressure forces the pistons against the brake pads which are, in turn, forced against each side of the brake disc, slowing or stopping the disc and wheel rotation.

GENERAL INSPECTION

- 1. Inspect brake pads for wear. If the brake pad friction material is worn down to 3 mm (0.12 in) thickness, the pads must be replaced.
- 2. Inspect brake disc as follows:
- a. Measure original thickness of disc at outside diameter (this area is not contacted by brake pad friction material).
- b. Measure thickness of disc at three points on the brake pad friction material contact circumference and determine the average disc thickness.
- c. Subtract 'b' from 'a'. If difference is 3 mm (0.12 in) or greater, the disc must be replaced.

Note: Refer to Section 160-0030, AXLE GROUP (HUB), for brake disc replacement instructions.

SM 1962 4-00 1

Suspension System - Air Spring

Section 180-0021

DISASSEMBLY

Numbers in parentheses refer to Fig. 2.

- 1. Remove top and bottom clamp plates (4 & 3) and clamp rings (2) from bellows (1).
- 2. Remove centre ring (5) from bellows (1) convolutions.
- 3. If necessary, remove nut (7) and bump stop (6) from bottom clamp plate (3). A sealing compound is applied to bump stop mounting face at assembly, it is necessary to break the seal to remove bump stop.

INSPECTION

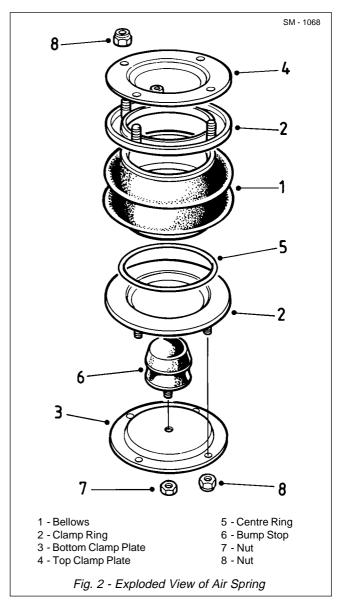
Numbers in parentheses refer to Fig. 2.

- 1. Clean clamp rings (2), bottom clamp plate (3), top clamp plate (4) and centre ring (5) in solvent to remove all contamination. Thoroughly dry all parts.
- 2. Inspect all parts for damage and excessive corrosion. Replace all worn or damaged parts.

ASSEMBLY

Numbers in parentheses refer to Fig. 2.

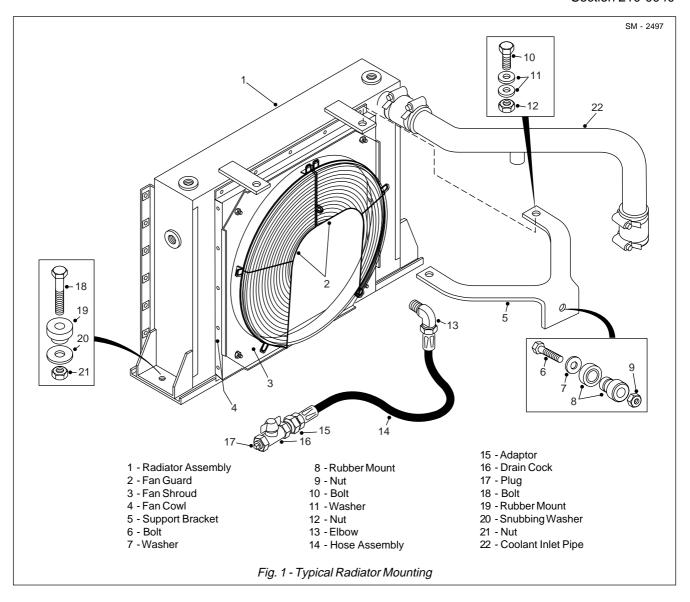
- 1. If bump stop (6) was removed from bottom clamp plate (3), coat the bump stop mounting face with sealing compound, such as 'Heldite' or equivalent. Bolt the bump stop to the lower clamp plate with nut (7). Torque tighten nut (7) to 23 Nm (17 lbf ft).
- 2. Install centre ring (5) on bellows (1).
- 3. Lightly coat the top and bottom beads of the bellows (1) with silicon or soapy water to aid in assembly of clamp rings (2) and clamp plates (3 & 4).
- 4. Install clamp rings (2) and bottom and top clamp plates (3 & 4) on bellows (1).


INSTALLATION

Numbers in parentheses refer to Fig. 1.

!∆ WARNING

To prevent personal injury and property damage, be sure wheel chocks, blocking materials and lifting equipment are properly secured and of adequate capacity to do the job safely.



- 1. Install air spring assembly between the frame cross member and suspension frame. Torque tighten nuts (8) to 23 Nm (17 lbf ft). Do not overtighten.
- 2. Connect the air line to the air spring assembly.
- 3. Raise frame, remove workshop stands and lower frame.
- 4. Install levelling valve control lever on mounting bracket.
- 5. Close primary air tank drain cock and start engine to charge air system to system pressure. Check connections for air leaks.
- 6. Refer to Section 180-0022, LEVELLING VALVE, for air spring ride height adjusting instructions.

2 SM 1480 9-98

COOLING SYSTEM - Radiator, Header Tank and Mounting

Section 210-0040

DESCRIPTION

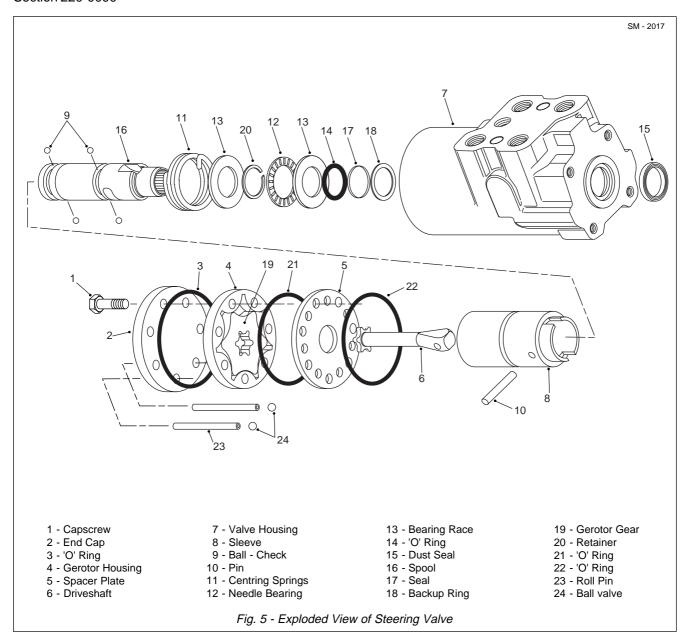
Numbers in parentheses refer to Fig. 1, unless otherwise specified.

Radiator assembly (1) is mounted in front of the engine cooling fan at the front end of the vehicle. It is fed from header tank (8) located in front of the operators compartment and mounted to the goalpost support assembly.

A fan shroud (3) improves the engine cooling fan efficiency, provides a more uniform distribution of air over radiator core (7, Fig. 2) and helps restrict recirculation of air within the engine compartment.

Recirculation baffle plates around radiator assembly (1) prevent hot air from the engine cooling fan being reintroduced into the cooling air circuit.

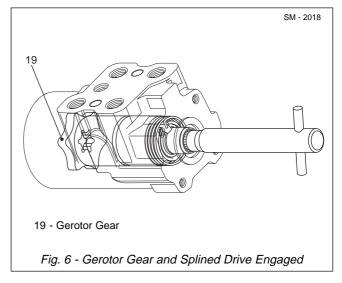
REMOVAL


Numbers in parentheses refer to Fig. 1, unless otherwise specified.

Do not remove the filler cap from the radiator header tank or attempt to drain the coolant until the engine has cooled to below 50° C (120° F). Once the engine has cooled, use extreme caution when removing the cap. When removing filler cap, always partially unscrew cap slowly to release pressure from the system. Remove filler cap slowly, as the sudden release of pressure from a heated cooling system can result in a loss of coolant and possible personal injury (scalding) from the hot liquid.

SM 1987 4-00

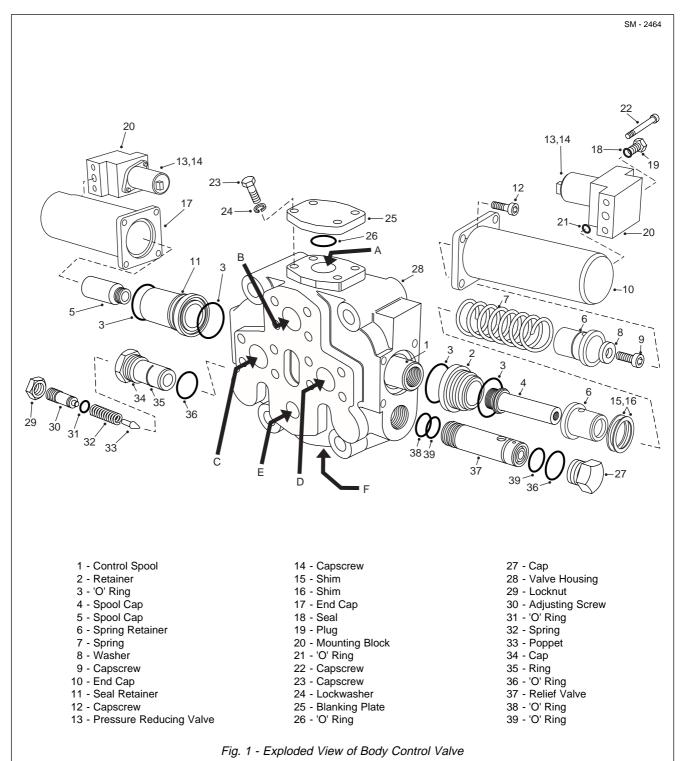
Section 220-0090


DISASSEMBLY

Numbers in parentheses refer to Fig. 5, unless otherwise specified.

Note: Steering valves fitted with anti-cavitation valves must be disassembled and assembled in the vertical postion to prevent ball valves (24) becoming trapped in the wrong cavities within the valve housing (7).

1. Clamp steering valve assembly horizontally in a soft jawed vice and break loose the seven capscrews (1). With capscrews (1) loosened, place steering valve vertically in vice, end cap (2), up.


Note: Hidden pin. If tension on this pin is released

4 SM 1986 Rev 1 11-00

BODY SYSTEM - Body Control Valve

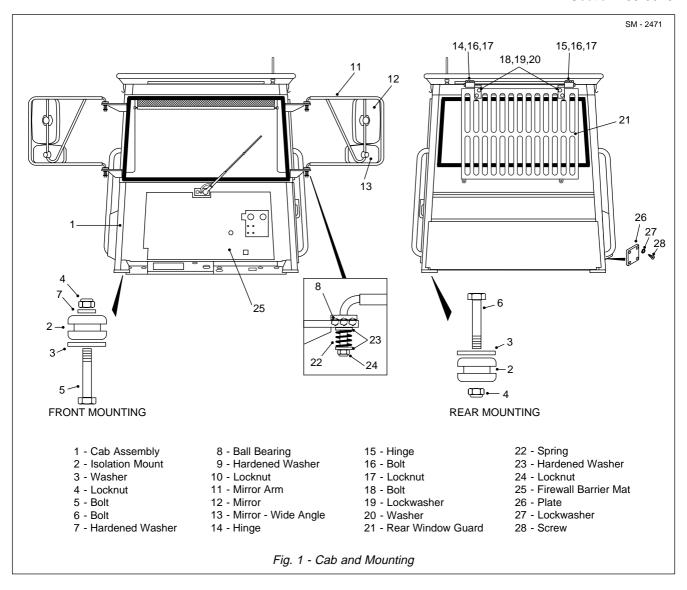
Section 230-0060

DESCRIPTION

Numbers and letters in parentheses refer to Fig. 1.

The body control valve can be identified as item 3 in Section 230-0000, BODY SYSTEM SCHEMATIC.

The single spool body control valve, which is fitted with electro hydraulic operation, is mounted behind the


front right hand wheel, onto a bracket mounted to the frame rail. The main components of the control valve assembly are a four position control spool (1), relief valve (37), check valve assembly and valve housing (28).

The position of the control spool is controlled by the body control joystick by means of electrical signals to

SM 1952 4-00 1

OPERATORS COMPARTMENT - Cab and Mounting

Section 260-0010

DESCRIPTION

Numbers in parentheses refer to Fig. 1.

The cab is fully insulated and mounted on rubber isolation mounts (2) to damp structure-borne noise and vibration. It conforms with ISO/SAE, ROPS (Roll Over Protective Structure) and FOPS (Falling Object Protective Structure) requirements as standard.

ROPS - ISO 3471, SAE J1040 APR 88 FOPS - ISO 3449, SAE J231

The protection offered by the roll over and falling object protective structure may be impaired if it has been subjected to any modification or damage.

Cab assembly (1) is spacious and offers outstanding visibility through large areas of tinted safety glass. Access to cab assembly (1) is from the left hand side with open tread steps, platform and handrail.

The cab interior, trimmed with noise-absorbent material, is extensively thermally insulated and a heater/filter/pressurizer and demisting unit keeps internal air fresh and dust free. Sliding windows provide additional ventilation. A side mounted air conditioner is also fitted. Refer to Section 260-0130, AIR CONDITIONING.

Note: Access from the cab, in the case of an emergency, can be gained by breaking any of the windows using the hammer provided (mounted on the right hand cab pillar).

SM 1957 4-00 1