INTRODUCTION

TABLE OF CONTENTS

page

VEHICLE IDENTIFICATION NUMBER DESCRIPTION
DESCRIPTION
VEHICLE CERTIFICATION LABEL
DESCRIPTION
FASTENER IDENTIFICATION
DESCRIPTION4
FASTENER USAGE
DESCRIPTION FASTENER USAGE6

VEHICLE IDENTIFICATION NUMBER

DESCRIPTION

The Vehicle Identification Number (VIN) plate is attached to the top left side of the instrument panel. The VIN contains 17 characters that provide data concerning the vehicle. Refer to the decoding chart to determine the identification of a vehicle.

To protect the consumer from theft and possible fraud the manufacturer is required to include a Check Digit at the ninth position of the Vehicle Identification Number. The check digit is used by the manufacturer and government agencies to verify the authenticity of the vehicle and official documentation. The formula to use the check digit is not released to the general public.

THREADED HOLE	REPAIR		
DESCRIPTION			
THREADED H	OLE REPAIR		6
INTERNATIONAL S	SYMBOLS		
DESCRIPTION -	INTERNATION	VAL SYMBOLS	6
METRIC SYSTEM			
DESCRIPTION			7
TORQUE REFERE	NCES		
DESCRIPTION			9

in-lbs to N∙m											N•m to in-lbs								
in- Ib	N∙m	in-Ib	N∙m	in-lb	N∙m	in-lb	N∙m	in-lb	N∙m	N∙m	in-lb	N∙m	in-lb	N∙m	in-lb	N∙m	in-lb	N∙m	in-Ib
2 4 6 8 10 12 14 16 18 20 22 24 20 32 34 36 38 40	.2260 .4519 .6779 .9039 1.1298 1.3558 1.5818 1.8077 2.0337 2.2597 2.4856 2.7116 2.7116 2.9376 3.1635 3.3895 3.6155 3.8414 4.0674 4.2934	42 44 46 50 52 54 56 80 62 64 66 80 72 74 76 78 0	4.7453 4.9713 5.1972 5.4232 5.6492 5.8751 6.1011 6.3270 6.5530 6.7790 7.0049 7.2309 7.4569 7.4569 7.6828 8.1348 8.3607 8.5867 8.8127 0.0294	82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118	9.2646 9.4906 9.7165 9.9425 10.3944 10.6204 10.8464 11.0723 11.7502 11.9762 12.2022 12.4281 12.6541 12.8601 3.3060 13.3320	122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158	13.7839 14.0099 14.2359 14.4618 14.6878 14.9138 15.1397 15.3657 15.5917 15.8176 16.0436 16.2496 16.2495 16.2475 16.2475 16.9475 17.1734 17.6293 17.6253 17.65553 17.65	162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196	18.3032 18.5292 18.7552 18.7811 19.4331 19.6590 19.8850 20.1110 20.3669 20.7889 20.7889 21.0148 21.2408 21.2408 21.2408 21.2408 21.2408 21.2417 22.37447 22.37447	.2 .6 .8 1 1.2 1.4 1.6 1.8 2.2 2.4 2.6 3.2 3.4 3.6 3.8 4	1.7702 3.5404 5.3107 7.0809 8.8511 10.6213 12.3916 14.1618 15.9320 17.7022 19.4725 21.2427 23.0129 24.7831 26.5534 28.3236 30.0938 31.8640 33.6342 35.6442	4.2 4.4 5.2 5.4 5.8 6.2 6.4 6.8 7.2 7.4 7.8 8	37.1747 38.9449 40.7152 42.4854 44.2556 47.7961 49.5663 51.3365 53.1067 54.8770 56.6472 58.4174 60.1876 61.9579 63.7281 65.4983 67.2685 69.0388 70.809	8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 11.1 11.2 11.4 11.6 11.8 12	72.5792 74.3494 76.1197 77.8899 79.6601 81.4303 83.2006 84.9708 86.7410 88.5112 90.2815 92.0517 93.8219 93.8219 95.5921 97.3624 99.1326 100.9028 102.6730 104.4433	12.2 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8 14 14.2 14.4 14.6 15.2 15.4 15.6 15.6 15.6	107.9837 109.7539 111.5242 113.2944 115.0646 116.8348 118.6051 120.3753 122.1455 123.9157 125.6860 127.4562 129.2264 130.9966 132.7669 134.5371 136.3073 138.0775 139.8478 141.6180	16.2 16.4 16.6 17 17.2 17.4 17.6 17.8 18.5 19 19.5 20 20.5 21 22 23 24 25	143.3882 145.1584 146.9287 148.6989 150.4691 152.2393 154.0096 155.7798 157.5500 159.3202 163.7458 168.1714 172.5970 177.0225 181.4480 185.8736 194.7247 203.5759 212.4270

ft-lbs to N•m

N•m to ft-lbs

ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	N∙m	ft-lb								
1	1.3558	21	28.4722	41	55 5885	61	82 7049	81	109.8212	1	7376	21	15.9888	41	30.2400	61	44.9913	81	59.7425
2	2.7116	22	29,8280	42	56.9444	62	84.0607	82	111.1770	2	1.4751	22	16.2264	42	30.9776	62	45.7289	82	60.4801
3	4.0675	23	31,1838	43	58,3002	63	85.4165	83	112.5328	3	2.2127	23	16.9639	43	31.7152	63	46.4664	83	61.2177
4	5.4233	24	32.5396	44	59.6560	64	86.7723	84	113.8888	4	2.9502	24	17.7015	44	32.4527	64	47.2040	84	61.9552
5	6.7791	25	33.8954	45	61.0118	65	88.1281	85	115.2446	5	3.6878	25	18.4391	45	33.1903	65	47.9415	85	62.6928
6	8.1349	26	35.2513	46	62.3676	66	89.4840	86	116.6004	6	4.4254	26	19.1766	46	33.9279	66	48.6791	86	63.4303
7	9.4907	27	36.6071	47	63.7234	67	90.8398	87	117.9562	7	5.1629	27	19.9142	47	34.6654	67	49.4167	87	64.1679
8	10.8465	28	37.9629	48	65.0793	68	92.1956	88	119.3120	8	5.9005	28	20.6517	48	35.4030	68	50.1542	88	64.9545
9	12.2024	29	39.3187	49	66.4351	69	93.5514	89	120.6678	9	6.6381	29	21.3893	49	36.1405	69	50.8918	89	65.6430
10	13.5582	30	40.6745	50	67.7909	70	94.9073	90	122.0236	10	7.3756	30	22.1269	50	36.8781	70	51.6293	90	66.3806
11	14.9140	31	42.0304	51	69.1467	71	96.2631	91	123.3794	11	8.1132	31	22.8644	51	37.6157	71	52.3669	91	67.1181
12	16.2698	32	43.3862	52	70.5025	72	97.6189	92	124.7352	12	8.8507	32	23.6020	52	38.3532	72	53.1045	92	67.8557
13	17.6256	33	44.7420	53	71.8583	73	98.9747	93	126.0910	.13	9.5883	33	24.3395	53	39.0908	73	53.8420	93	68.5933
14	18.9815	34	46.0978	54	73.2142	74	100.3316	94	127.4468	14	10.3259	34	25.0771	54	39.8284	74	54.5720	94	69.3308
15	20.3373	35	47.4536	55	74.5700	75	101.6862	95	128.8026	15	11.0634	35	25.8147	55	40.5659	75	55.3172	95	70.0684
16	21.6931	36	48.8094	56	75.9258	76	103.0422	96	130.1586	16	11.8010	36	26.5522	56	41.3035	76	56.0547	96	70.8060
17	23.0489	37	50.1653	57	77.2816	77	104.3980	97	131.5144	17	12.5386	37	27.2898	57	42.0410	77	56.7923	97	71.5435
18	24.4047	38	51.5211	58	78.6374	78	105.7538	98	132.8702	18	13.2761	38	28.0274	58	42.7786	78	57.5298	98	72.2811
19	25.7605	39	52.8769	59	79.9933	79	107.1196	99	134.2260	19	14.0137	39	28.7649	59	43.5162	1/9	58.2674	99	73.0187
20	27.1164	40	54.2327	60	81.3491	80	108.4654	100	135.5820	20	14.7512	40	29.5025	60	44.2537	80	59.0050	100	73.7562
L		1		1												1		1	

in. to mm

mm to in.

in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.
.01	.254	.21	5.334	.41	10.414	.61	15.494	.81	20.574	.01	.00039	.21	.00827	.41	.01614	.61	.02402	.81	.03189
.02	.508	.22	5.588	.42	10.668	.62	15.748	.82	20.828	.02	.00079	.22	.00866	.42	.01654	.62	.02441	.82	.03228
.03	.762	.23	5.842	.43	10.922	.63	16.002	.83	21.082	.03	.00118	.23	.00906	.43	.01693	.63	.02480	.83	.03268
.04	1.016	.24	6.096	.44	11.176	.64	16.256	.84	21.336	.04	.00157	.24	.00945	.44	.01732	.64	.02520	.84	.03307
.05	1.270	.25	6.350	.45	11.430	.65	16.510	.85	21.590	.05	.00197	.25	.00984	.45	.01772	.65	.02559	.85	.03346
.06	1.524	.26	6.604	.46	11.684	.66	16.764	.86	21.844	.06	.00236	.26	.01024	.46	.01811	.66	.02598	.86	.03386
.07	1.778	.27	6.858	.47	11.938	.67	17.018	.87	22.098	.07	.00276	.27	.01063	.47	.01850	.67	.02638	.87	.03425
.08	2.032	.28	7.112	.48	12.192	.68	17.272	.88	22.352	.08	.00315	.28	.01102	.48	.01890	.68	.02677	.88	.03465
.09	2.286	.29	7.366	.49	12.446	.69	17.526	.89	22.606	.09	.00354	.29	.01142	.49	.01929	.69	.02717	.89	.03504
.10	2.540	.30	7.620	.50	12.700	.70	17.780	.90	22.860	.10	.00394	.30	.01181	.50	.01969	.70	.02756	.90	.03543
.11	2.794	.31	7.874	.51	12.954	.71	18.034	.91	23.114	.11	.00433	.31	.01220	.51	.02008	.71	.02795	.91	.03583
.12	3.048	.32	8.128	.52	13.208	.72	18.288	.92	23.368	.12	.00472	.32	.01260	.52	.02047	.72	.02835	.92	.03622
.13	3.302	.33	8.382	.53	13.462	.73	18.542	.93	23.622	.13	.00512	.33	.01299	.53	.02087	.73	.02874	.93	.03661
.14	3.556	.34	8.636	.54	13.716	.74	18.796	.94	23.876	.14	.00551	.34	.01339	.54	.02126	.74	.02913	.94	.03701
.15	3.810	.35	8.890	.55	13.970	.75	19.050	.95	24.130	.15	.00591	.35	.01378	.55	.02165	.75	.02953	.95	.03740
.16 .17 .18	4.064 3.318 4.572	.36 .37 38	9.144 9.398 9.652	.56 .57 .58	14.224 14.478 14.732	.76 .77 .78	19.304 19.558 19.812	.96 .97 .98	24.384 24.638 24.892	.16 .17	.00630 .00669	.36 .37 .38	.01417 .01457 .01496	.56 .57 .58	.02205 .02244 .02283	.76 .77 .78	.02992 .03032 .03071	.96 .97 .98	.03780 .03819 .03858
.19	4.826	.39	9.906	.59	14.986	.79	20.066	.99	25.146	.19	.00748	.39	.01535	.59	.02323	.79	.03110	.99	.03898
.20	5.080	.40	10.160		15.240	.80	20.320	1.00	25.400	.20	.00787	.40	.01575	.60	.02362	.80	.03150	1.00	.03937
	J901N-10																		

- 2 16 FRONT -
- 5. Remove the o-ring (2) and discard then remove disc brake rotor (1). (Refer to 5 BRAKES/HY-DRAULIC/MECHANICAL/ROTORS REMOVAL).

- Remove the wheel speed sensor (2). (Refer to 5 -BRAKES/ELECTRICAL/FRONT WHEEL SPEED SENSOR - REMOVAL).
- 7. Remove the axle shaft nut. (if equipped with four wheel drive)
- 8. Remove the hub/bearing (3). (Refer to 2 SUS-PENSION/FRONT/HUB / BEARING - REMOVAL).

- 9. Remove the outer tie rod end retaining nut.
- Seperate the outer tie rod end (3) from the steering knuckle using special tool 8677(5). (Refer to 19 - STEERING/LINKAGE/TIE ROD END -REMOVAL).

2 - 50 REAR -

REMOVAL

LEFT SIDE

- 1. Raise the vehicle and support the rear axle.
- 2. Remove the fuel tank (Refer to 14 FUEL SYSTEM/FUEL DELIVERY/FUEL TANK REMOVAL).
- Remove the lower suspension arm nut (2) and bolt (1) from the axle bracket.
- 813ff3fa 1 5 6 813ff419
- 4. Remove the nut (1) and bolt (8) from the frame rail and remove the lower suspension arm (9).

RIGHT SIDE

1. Raise the vehicle and support the rear axle.

3 - 40 PROPELLER SHAFT -

- 4. Install shaft (1) on transfer case flange (2).
- 5. Install bolts to transfer case flange (2) and tighten bolts to 32 N·m (24 ft. lbs.).
- 6. Install transmission crossmember.

PROPELLER SHAFT-REAR

REMOVAL

NOTE: The propeller shaft slip joint boot can be replaced. Place reference marks on both sections of the shaft to ensure proper assemble.

- 1. With vehicle in neutral, position vehicle on hoist.
- 2. Mark the propeller shaft (1) pinion flange (2), transmission/transfer case flanges and for installation reference.

3 - 146 FRONT AXLE - C200FE -

INSTALLATION

- 1. Bolt spreader Adapters 9669 to the differential housing.
- 2. Install Spreader W-129-B on adapters and spread case 3mm (0.011in.).
- 3. Slide differential assembly (1) into the right of the housing. Then slide ELSD pump (2) and differential into housing.

- 4. Install differential bearing cups into their original locations.
- 5. Install axle tube side differential housing (1) snap ring (2).

8. Install the rotor (Refer to 5 - BRAKES/HYDRAU-LIC/MECHANICAL/ROTORS - INSTALLATION).

- Install the caliper and the slide bolts (4) (Refer to 5

 BRAKES/HYDRAULIC/MECHANICAL/DISC
 BRAKE CALIPERS INSTALLATION).
- Install the wheel and tire assembly (Refer to 22 -TIRES/WHEELS/WHEELS - STANDARD PROCEDURE).

PARKING BRAKE

OPERATION

The parking brakes operated by a automatic tensioner mechanism built into the hand lever and cable system. The front cable is connected to the hand lever and the equalizer. The rear cables attached to the equalizer and the parking brake shoe actuator.

A set of drum type brake shoes are used for parking brakes. The shoes are mounted to the rear disc brake adaptor. The parking brake drum is integrated into the rear disc brake rotor.

Parking brake cable adjustment is controlled by an automatic tensioner mechanism. The only adjustment if necessary is to the park brake shoes if the linings are worn.

DIAGNOSIS AND TESTING - PARKING BRAKE

NOTE: Parking brake adjustment is controlled by an automatic cable tensioner and does not require adjustment. The only adjustment that may be necessary would be to the park brake shoes if they are worn.

- WK

C1042-RIGHT FRONT TONE WHEEL PERFORMANCE (CONTINUED)

For the Anti-Lock Brake System circuit diagram. (Refer to 5 - BRAKES - SCHEMATICS AND DIAGRAMS)

For a complete wiring diagram Refer to Section 8W.

• When Monitored:

With the ignition on.

Set Condition:

When the Anti-Lock Brake Module detects periodic drops of a WSS signal.

Possible Causes

RIGHT FRONT TONE WHEEL

Diagnostic Test

1. CHECK FOR A DTC C1042-RIGHT FRONT TONE WHEEL PERFORMANCE

NOTE: This DTC must be active for the results of this test to be valid.

Turn the ignition on.

With the scan tool, read DTCs.

Record DTC and Freeze Frame information.

With the scan tool, erase DTCs.

Cycle the ignition switch off then on.

CAUTION: Ensure brake capability is available before road testing.

Test drive the vehicle in a straight line to 40 Km/h (25 mph).

With the scan tool, read DTCs.

Does the scan tool display: C1042-RIGHT FRONT TONE WHEEL PERFORMANCE?

Yes >> Go To 2

No >> Refer to the INTERMITTENT CONDITION diagnostic procedure. Perform ABS VERIFICATION TEST - VER 1.

2. CHECK THE RIGHT FRONT TONE WHEEL FOR DAMAGE

NOTE: Check the tone wheel teeth for missing teeth, cracks, or looseness. Teeth should be perfectly square, not bent, or nicked.

Check the Right Front Tone Wheel for damage.

Were any problems found?

- Yes >> Replace the Right Front Tone Wheel in accordance with the Service Information. Perform ABS VERIFICATION TEST - VER 1.
- No >> Test Complete.

B140D-REAR RIGHT AUDIO SPEAKER OUTPUT CIRCUIT LOW

B1231-PTS SENSOR 8 CIRCUIT LOW

*NO RESPONSE FROM AHBM (SMARTBEAM) (CONTINUED)

For a complete wiring diagram Refer to Section 8W.

Possible Causes
(F921) FUSED RUN RELAY OUTPUT CIRCUIT OPEN OR SHORTED
(Z915) GROUND CIRCUIT OPEN
(D55) AND (D54) CAN B BUS CIRCUITS OPEN
INSIDE REARVIEW MIRROR (CONTROLS SMARTBEAM FUNCTIONS)

Diagnostic Test

1. TEST FOR INTERMITTENT CONDITION

Turn the ignition on.

NOTE: Ensure the IOD fuse is installed and battery voltage is between 10.0 and 16.0 volts. With the scan tool, select ECU view.

NOTE: A red X will be next to the module that is not communicating, indicating that the module is not active on the Bus network. A green check indicates that the module is active on the Bus network.

Does the scan tool display a red X next to the module?

Yes >> Go To 2

No >> The no response condition is not present at this time. Using the wiring diagram/schematic as a guide, inspect the wiring for chafed, pierced, pinched, and partially broken wires and the wiring harness connectors for broken, bent, pushed out, and corroded terminals.

2. (F921) FUSED RUN RELAY OUTPUT CIRCUIT OPEN OR SHORTED

Turn the ignition off.

NOTE: Check the FCM and the Cluster for any ignition related DTCs. If set, perform the appropriate DTC before proceeding. Disconnect the Inside Rearview Mirror C1 harness connector.

Turn the ignition on.

Using a 12-volt test light connected to ground, check the (F921) Fused Run Relay Output circuit.

Does the test light illuminate brightly?

Yes >> Go To 3

No >> Repair the (F921) Fused Run Relay Output circuit for an open or short.

Perform BODY VERIFICATION TEST – VER 1. (Refer to 8 - ELECTRICAL/ELECTRONIC CONTROL MODULES -STANDARD PROCEDURE).

B211A-IGNITION RUN/ACC/SPAD CONTROL CIRCUIT LOW (CONTINUED)

For the Power Door Lock circuit diagram (Refer to 8 - ELECTRICAL/POWER LOCKS - SCHEMATICS AND DIA-GRAMS)

For a complete wiring diagram Refer to Section 8W.

- When Monitored: Continuously
- Set Condition: When the Cluster senses a low condition on the (F103) Ignition Run/Acc Relay Control circuit for over 10 seconds, this code will set.

Possible Causes

(F103) IGNITION RUN/ACC/SPAD RELAY CONTROL CIRCUIT LOW JUNCTION BLOCK INSTRUMENT CLUSTER

Diagnostic Test

1. TEST FOR INTERMITTENT CONDITION

With the scan tool, record and erase DTC's Operate the door locks several times. Cycle the ignition from on to off. Turn the ignition on. With the scan tool, read DTC's.

Does the scan tool display B211A-IGNITION RUN/ACC/SPAD CONTROL CIRCUIT LOW?

Yes >> Go To 2

No >> The conditions that caused this code to set are not present at this time. Using the wiring diagram/schematic as a guide, inspect the wiring and connectors.

Perform BODY VERIFICATION TEST - VER 1. (Refer to 8 - ELECTRICAL/ELECTRONIC CONTROL MODULES - STANDARD PROCEDURE)

2. IGNITION RUN/ACC/SPAD RELAY SHORTED Turn the ignition off. Disconnect the Cluster C2 connector. Remove the PDC fuse #13. Measure the resistance between ground and the (F103) Ignition Run/ ACC/SPAD Relay Control circuit in the Cluster C2 connector Is the resistance below 1000.0 ohms? FUSE 13 (PDC) No >> Replace the Instrument Cluster in accordance with service information. Perform BODY VERIFICATION TEST - VER 1. (Refer to 8 - ELECTRICAL/ELECTRONIC CONTROL MODULES -STANDARD PROCEDURE) 10 20 >> Go To 3 Yes **CLUSTER C2** 8149aa6c

- Service interval (Gasoline engines), 3200,...9600 KM, in increments of 800 KM/2000,...6000 miles in increments of 500 miles
- Service interval (Diesel engines), 4000,...20000 KM, in increments of 1000 KM/2500,...12500 miles in increments of 625 miles
- Automatically move seat back on exit, On or Off

Compass/Temperature/Trip Computer Mode

This display provides the outside temperature, one of the eight compass headings to indicate the direction the vehicle is facing, and vehicle trip information. The compass and temperature display is the normal display. When the C/T button is pressed the compass/temperature display returns.

The trip computer function will be displayed if the STEP button is pressed from the Compass/Temperature display mode. The trip computer displays the following information:

- Average fuel economy
- · Distance to empty
- Trip A
- Trip B
- · Elapsed time
- Miles to service
- Tire pressure display (if equipped)

Universal Garage Door Transceiver

The Electronic Vehicle Information Center (EVIC) features a driver-interactive display which includes HomeLink system messages. For additional information on the universal transceiver (Refer to 8 - ELECTRICAL/OVERHEAD CONSOLE/UNIVERSAL TRANSMITTER - DESCRIPTION).

DIAGNOSIS AND TESTING

ELECTRONIC VEHICLE INFORMATION CENTER

The Electronic Vehicle Information Center (EVIC) data is obtained from several components on the Controller Area Network (CAN) Data Bus circuit. The EVIC will not function properly if the bus messages from any of these components is not receive. If no EVIC data is displayed, check the CAN Data Bus circuit communications, the Instrument Cluster functions and the Front Control Module (FCM). Any diagnosis of the EVIC system should begin with, the use of a scan tool and the appropriate diagnostic service information.

The use of a scan tool and the proper diagnostic procedures information are recommended for further testing of the EVIC and the CAN Data Bus circuit.

For complete circuit diagrams, refer to the appropriate wiring information. The wiring information includes wiring diagrams, proper wire and connector repair procedures, details of wire harness routing and retention, connector pin-out information and location views for the various wire harness connectors, splices and grounds.

STANDARD PROCEDURE

COMPASS CALIBRATION

CAUTION: Do not place any external magnets, such as magnetic roof mount antennas, in the vicinity of the compass. Do not use magnetic tools when servicing the overhead console.

The electronic compass unit features a self-calibrating design, which simplifies the calibration procedure. This feature automatically updates the compass calibration while the vehicle is being driven. This allows the compass unit to compensate for small changes in the residual magnetism that the vehicle may acquire during normal use. If the compass readings appear to be erratic or the Electronic Vehicle Information Center (EVIC) displays "CAL", perform the following calibration procedure. Also, any time EVIC service replacement components are installed, they must be calibrated using this procedure. Do not attempt to calibrate the compass near large metal objects such as other vehicles, large buildings, or bridges; or, near overhead or underground power lines.

P0884-POWER UP AT SPEED

The serviceable components of the tire pressure sensor are :

- Sensor-To-Wheel Seal (2) and Metal Washer (1)
- Valve Stem Cap (4)
- Valve Stem Core
- Valve Stem Nut (with pressed-in washer) (3)

The valve stem caps and cores used are specifically designed for the tire pressure monitoring sensors. Although similar to standard valve stem caps and cores, they are different. The valve stem cap has a special seal inside to keep moisture and corrosion out. The valve stem core has a special nickel coating to protect from corrosion.

OPERATION

The battery operated tire pressure sensors lay dormant (Park Mode), then wake and start transmitting (Drive Mode) when the vehicle first reaches speeds over 20 mph (32 km/h). Once the wheels stop rotating for a period of approximately 20 minutes, the sensors shut down until again awaken. Although not transmitting as when in Drive Mode, while in Park Mode, the sensors still transmit approximately once every 13 hours to let the receiver know air pressure status at that time.

Using an RF signal, each sensor transmits tire pressure data approximately once every minute. Each sensor's (transmitter) broadcast is uniquely coded so that the wireless control module (WCM) can monitor the state of each of the sensors on the four rotating road wheels. The WCM automatically learns and stores the sensor's ID while driving after a sensor has been replaced. **There is no formal retraining procedure necessary.**

For additional information, refer to appropriate diagnostic information.

CAUTION

CAUTION: The use of tire sealants is strictly prohibited for vehicles equipped with the Tire Pressure Monitoring system. Tire sealants can clog tire pressure sensors.

CAUTION: Tire pressure sensor valve stem caps and cores are specially designed for the sensors. Due to risk of corrosion, do not use a standard valve stem cap or core in a tire pressure sensor in place of the original equipment style sensor cap and core.

CAUTION: Do not attempt to install a tire pressure sensor in an aftermarket wheel. Use tire pressure sensors in original style factory wheels only.

CAUTION: Any time a sensor is to be installed in a wheel, a new seal and washer must be installed on the stem to ensure air tight sealing.

WK ·