1.2 Vehicle Model: HFC3251KR1

Company Code Nam	ne: HFC - repres	sents JAC motor	
Vehicle Type Code:	1Cargo truck	2Off-road vehicle	3Dumper
	4Tractor 5	-Special purpose vehicl	e 6Passenger car
	7Sedan	9Semitrailer	
Main Specifications (Product serial No.:	Code: 25repres 1Product deve	ents the maximum groselopment serial No. (1 ^s	ss weight is 25 tons. st change,2 nd development)

Code from company: K---Diesel R1---King cabin

For example: HFC3251KR1 represents JAC vehicle with king cab, 25 tons maximum gross weight, the first change.

1.4 Tightening Torques of Bolts and Nuts for Hyundai

Unless otherwise specified, the parts and equipment of vehicle must be tightened by the following standard bolts nuts. Tightening torques for these bolts and nuts are shown below. **Note:**

Threads and seat surface must be in dry state.

When there is a difference between the nut and bolt(stud) identification marks, tighten to the torque corresponding to the bolt(stud) identification mark.

Standard	bolts	and	nuts	

Dia /mm	Pitch mm	4T(Head mark₄ or ⊖)	7T (Head mark 7 or Θ)	ST (Head mark 8 or ⊕)
5	0.8	2.0-2.9(0.2-0.3)	3.9-5.9(0.4-0.6)	4.9-6.9(0.5-0.7)
6	1. 0	3.9-5.9(0.4-0.6)	6.9-10.8(0.7-1.1)	7.8-11.8(0.8-1.2)
8	1. 25	8.8-13.7(0.9-1.4)	16.7 - 25.5(1.7 - 2.6)	19.6 - 29.4(2.0 - 3.0)
10	1. 25	18.6 - 27.5(1.9 - 2.8)	34.3-53.9(3.5-5.5)	44.1-58.8(4.5-6.0)
10	1. 5	17.7-26.5(1.8-2.7)	32. 4-49. 0(3. 3-5. 0)	42.1-58.8(4.3-6.0)
19	1. 25	33. 3-49. 0(3. 4-5. 0)	68.6-93.2(7.0-9.5)	83.4-108(8.5-11)
12	1.75	30.4-46.1(3.1-4.7)	63.7-83.4(6.5-8.5)	73. 5-98. 1(7. 5-10)
14	z 1. 5	58.8-83.4(6.0-8.5)	118-157(12-16)	127-177(13-18)
14	2. 0	53. 9-73. 5(5. 5-7. 5)	108-137(11-14)	118-167(12-17)
16	1.5	93. 2 - 127 (9. 5 - 13)	177-235(18-24)	196 - 265(20 - 27)
10	2. 0	88.3-118(9.0-12)	157 - 216(16 - 22)	186-255(19-26)

Identification marks of nut

Identification marks of stud

The mechanic performance table of bolts in China

Quality Grade(mark)	6.8	8.8	9.8	10.9	12.9
Tensile strength limit σbmax(MPa)	600	800	900	1040	1220
Yield limit σsmax(MPa)	480	640	720	940	1100
Corresponding to Hyundai standards	4T	6T	7T	8T	10T

The number before the radix point represents one percent of the nominal tensile strength;

The number after the radix point represents ten times of the ratio of the nominal yield limit and nominal tensile strength.

3.3 cooling system

Cooling system consists of water pump, thermostat, fan, water drain trap, water outlet pipe (thermostat house for 4DF), and water tank radiator in the car, etc. (Fig. 3-4). The water from radiator is pumped to the inlet hole on the left side of cylinder block by the centrifugal water pump. Passing through oil cooler the cooling water enters water jacket of each cylinder, then the cylinder head, finally the water outlet pipe (thermostat house for 4DF). Two thermostats for adjusting water temperature are set on the end of water outlet pipe for 6DF; while a thermostat is set in the thermostat house for 4DF. The principle is as follows: If the temperature of the cooling water from the water outlet pipe (thermostat house for 4DF) is lower than opening temperature, the thermostat will close, the cooling water directly returns to water pump through the gluey pipe, and no longer enters radiator, this called small cycle; when the temperature of cooling water exceeds the all-open temperature, the control valves of thermostats open, then the cooling water enters radiator.

The engine adopt waxen thermostat. When the thermostats fully open, their lift should not be less than 8mm if thermostat can not open, outlet water temperature will increase soon, so it must be changed termly. Users can put thermostat in water and burn it to check if thermostat works well.

When the ambient temperature is below 0° C, in case that the machine would be frozen, antifreeze fluid should be added to the cooling water. Generally the antifreeze fluid has three types: alcohol-water type, glycerin-water type, and glycol-water type. Different ratios of these chemical materials to water will lead to different freezing points. The ingredients of antifreeze fluid display in table 4-3

Freezing point	Alcohol-water type (Alcohol	Glycerin-water type (Glycerin	Glycol-water type (Glycol
(°C)	mass percentage%)	mass percentage%)	mass percentage%)
-5	10	21	-
-10	20	32	28
-15	25	43	32
-20	30	51	38
-25	35	58	45
-30	40	64	48
-40	55	73	55
-50	70	-	60

Table 4-3 Ingredients of antifreeze flu	ents of antifreeze fluid
---	--------------------------

Note:

1. The antifreeze fluid is not edible for its toxicity.

2. After temperature increased, heat expansion amount of antifreeze fluid is much big.

So the injection amount of antifreeze fluid should be 8% less than the previous injection amount of water, in case those components such as water tank will be breached.

3. The poor antifreeze fluid, which corrodes the cylinder block, is forbidden.

Antifreeze fluids of different ingredients or brands cannot be mixed.

4.4 Preparations before starting

4.4.1 Preparations before starting

Check the level of lubricating oil in the oil sump.

Check the stored diesel oil in the fuel tank and open the fuel switch.

Check whether the cooling water in the water tank of radiator and subsidiary water tank is full.

A new engine should be dearated the fuel system and cooling system according to the following way.

4.4.2 Deaerate the fuel system

Air in the fuel system may cause abnormal fuel supply of the injection pump, resulting in difficulties in starting the engine, unstable running and even forcing the engine to stop. Therefore the fuel system must be deaerated when the fuel in the fuel tank runs out and needs refilling or when the injection pump, the fuel filter and the fuel pipes have been removed and refitted.

Below are the procedures of deaerating air in the fuel system:

Unscrew the outlet screw on the fuel filter and then press the handle of fuel supply pump

1.2 Temperature and pressure Parameter of diesel engine

0
5
5
0
441

1.3 Tighten torque and tighten method of main screw thread connections

	Table	e 1-1	
Description	quantity×specification	Screw tighten torque(N.m)	Note
Cylinder head bolt	$26 \times M15 \times 2$	245 ± 15	Spread lubricating oil
Connecting rod	12×M12×1.5	155 ± 5	Spread screw thread glue
Flywheel bolt	7×M16×1.5	275 ± 10	Spread lubricating oil
Main bearing bolt	14×M18	90N.m+180°	Rotating angle method
Piston cool nozzle tighten bolt	6×M12	35±5	Don't Spread screw thread glue
Damper tighten bolt	5×M14×1.5	180 ± 10	Spread screw thread glue
Timing gear tighten bolt-camshaft	1×M20×1.5	206 +9.8 -19.6	Spread lubricating oil
Air compression pump gear shaft tighten bolt	1×M12	63 +9.8 0	Spread screw thread glue
Air compression pump gear tighten nut	1×M18	157 +4.9 -24.5	Spread lubricating oil
Front oil seal seat bolt	5×M12	59 +8 -12	
Rear oil seal seat bolt	5×M8	20 +5 -7	
Fuel injection pump driven gear tighten nut	1×M20×1.5	157 +4.9 -24.5	Spread lubricating oil

Engine

Fault code	P0016	Display content	Signal deviation between crankshaft and camshaft sensor
------------	-------	-----------------	---

Fault inspect for accelerator pedal sensor (1)

Fault code	P0122	Display content	Signal of accelerator pedal sensor (1) is too low
Fault code	P0123	Display content	Signal of accelerator pedal sensor (1) is too high
Fault code	P0121	Display content	Signal of accelerator pedal sensor (1) is invalidation

Fault inspect for accelerator pedal sensor (2)

Fault code	P0222	Display content	Signal of accelerator pedal sensor (2) is too low
Fault code	P0223	Display content	Signal of accelerator pedal sensor (2) is too high
Fault code	P0221	Display content	Signal of accelerator pedal sensor (2) is invalidation

Fault inspect for cooling temperature exceed upper limited value

Fault code P021 / Display content Cooling liquid temperature of diesel engine is too high

Fault test for fuel injector

Fault code	P0262	Display content	Short circuit between 1st cylinder fuel injector junction and	
			battery	
Fault code	P0261	Display content	1st cylinder fuel injector two junctions short circuit	
Fault code	P0265	Display content	Short circuit between 2nd cylinder fuel injector junction and	
			battery	
Fault code	P0264	Display content	2nd cylinder fuel injector two junctions short circuit	
Fault code	P0268	Display content	Short circuit between third cylinder fuel injector junction and	
			battery	
Fault code	P0267	Display content	3rd cylinder fuel injector two junctions short circuit	
Fault code	P0271	Display content	Short circuit between 4th cylinder fuel injector junction and	
			battery	
Fault code	P0270	Display content	4th cylinder fuel injector two junctions short circuit	
Fault code	P0274	Display content	Short circuit between 5th cylinder fuel injector junction and	
			battery	
Fault code	P0273	Display content	5th cylinder fuel injector two junctions short circuit	
Fault code	P0277	Display content	Short circuit between 6th cylinder fuel injector junction and	
			battery	
Fault code	P0276	Display content	6th cylinder fuel injector two junctions short circuit	

Fault test for high pressure oil rail

Fault code	P0193	Display content	Voltage is higher than top limited
Fault code	P0192	Display content	Voltage is lower than low limited
Fault code	P0191	Display content	Rail pressure sensor is wrong

V -2. Maintenance Criteria

Item	Standard Dimension(mm)	Wear Limit (mm)			
Flank Clearance for All Gears					
Rev.	0.08 ~ 0.16				
1 st	0.08 ~ 0.18				
2 nd	0.08 ~ 0.16	0.50			
3 rd	0.08 ~ 0.16				
4 th -6 th	0.04 ~ 0.12	0.40			
Axial Clearance for Main Shaft Gears					
Rev. Gear	0.20 ~ 0.35	1.00			
ldle Gear	0.15 ~ 0.60	1.20			
1st Gear	0.15 ~ 0.30	0.80			
2nd Gear	0.15 ~ 0.30	0.80			
3rd Gear	0.15 ~ 0.30	0.80			
4th Gear	0.15 ~ 0.30	0.80			
6th Gear	0.175 ~ 0.475	1.80			
Flank Clearance for Blocks on Shift Bar Housing					
Rev and 1 st /2 nd	1.2 ~ 5.0	5.1			
1 st /2 nd and 3 rd /4 th	0.9 ~ 3.3	3.4			
$3^{rd}/4^{th}$ and $5^{th}/6^{th}$	1.7 ~ 4.5	4.6			
Other Clearance					
Spare Travel for Synchronizer (2 nd to 6 th)	1.8 ~ 2.35	Min0.2			

29. Screw main shaft screw cap onto main shaft

30. Lift main shaft out

31. Remove counter shaft rear cover screw

32. Knock down counter shaft rear cover

20. Put glue on the place installing input

17. Install 6th synchro ring

18. Install 5/6 synchro ass'y

19. Choose circlip

20. Install the circlip into slot

The concentricity of the propeller shaft: Measure the concentricity at the center of the propeller shaft.

	(mm)
Standard	Limit
≤0.5	1.0

The clearance when the spline rotates in normally direction:

Check the clearance between the spline and sleeve in normal direction with clearance gauge.

(mm)

Standard	Limit
≤0.1	0.3

Lubricate universal joint of driveshaft and slip sleeve:

Lubricate with short lubricator until the grease overflows.(only for general grease)

The assembly of the spline and slip joint:

Take notice at the arrow marks on the slide joint and rear propeller shaft, the arrow should be matched.

The assembly of the needle roller bearing:

Apply the grease on the oil seal and bearing, assemble the spider into the flange yoke, assemble the needle roller bearing into the flange yoke hole, and tap it with a soft hammer.

(C) Install the lock plate and make sure that the lock nuts are all(three) aligned with the bolt holes of the lock plate. Then tighten the lock bolts to 6.9 to 11 Nm(0.7 to 1.1 kgf.m). If the lock nut and lock plate bolt holes are not aligned, proceed as follows:

1. If the lock nut hole is within ranges A, loosen the lock nut and align with hole a.

2. If the lock nut hole is within range B, turn the lock plate inside out and loosen the lock nut and align with hole a.

3. If the lock nut hole is on X-X axis, turn the lock plate inside out and the holes will be aligned.

(d) Perform the same procedure as in step(c)

(e) Measurement of wheel hub bearing starting torque.

Install a spring balancer to a hub bolt and pull slowly in the tangential direction to measure the tangential force as the wheel hub starts to turn. If the tangential force so measured is not as specified, repeat from(c).

Note:

- 1. If the tangential force is within nominal value range, the starting torque should be as specified. If the tangential force is out of specification, readjust the starting torque.
- 2. The starting torque must not exceed the upper limit of the nominal value.
- 3. Before taking measurement, make sure that the lining is not in contact with the drum.

3). Inspection and record the backlash of planet gear

Note: locking the cross shaft when check backlash

4)、 disassembly the cross shaft & planet gear assy', then take out the planet gear and washer

- 5)、take out shaft gear and shim
- 6), remove the ring gear

7), disassembly differential case $\ensuremath{\mathsf{B/R}}$

5 Insufficient brake force

The compressed air is constantly supplied to the delivery port of the air brake.

When the pedal (dual brake valve) is depressed, the compressed air flows via the relay valve (quick release valve in the case of the front wheels) to the brake chamber to actuate the slack adjuster. The slack adjuster turns the cam which forces the brake shoes against the brake drum to decelerate or stop the vehicle.

When the pedal is released, the compressed air is released to atmosphere and the brake shoes return to the original position.