

HYDRA-MATIC 6L80 (6 Speed)

(()

50

INDEX

GENERAL DESCRIPTION AND OPERATION	4
SHIFT QUADRANT DESCRIPTION	4
INTERNAL COMPONENT LOCATION AND APPLICATION CHART	6
SOLENOID APPLICATION CHART	7
ELECTRONIC COMPONENT LOCATIONS AND DESCRIPTION	8
PARTIAL WIRE SCHEMATIC	18
DIAGNOSTIC TROUBLE CODE (DTC) IDENTIFICATION	19
CHECKBALL LOCATIONS AND FUNCTION	23
OIL PASSAGE IDENTIFICATION	24
IDENTIFICATION TAG LOCATION AND INFORMATION	29
TRANSMISSION FLUID REQUIREMENTS	29
CONVERTER HOUSING IDENTIFICATION	30
TRANSMISSION DISASSEMBLY	31
COMPONENT REBUILD SECTION	
TRANSMISSION CASE ASSEMBLY	39
OIL PUMP ASSEMBLY	41
4-5-6 CLUTCH HOUSING ASSEMBLY	50
1-2-3-4 AND 3-5 REVERSE CLUTCH HOUSING ASSEMBLY	56
CENTER SUPPORT ASSEMBLY	66
LOW SPRAG ROTATION	69
1-2-3-4 CLUTCH HUB AND SHAFT ASSEMBLY	72
2-6 AND 3-5 REVERSE CLUTCH HUB AND SHAFT ASSEMBLY	72
REAR CARRIER AND OUTPUT SHAFT ASSEMBLY	73
VALVE BODY AND SOLENOID BODY/TCM ASSEMBLY	81
EXTENSION HOUSING ASSEMBLY	88
TRANSMISSION FINAL ASSEMBLY	89
BOLT CHART FOR IDENTIFICATION	<i>101</i>
SPECIAL TOOLS AND EQUIPMENT	<i>102</i>
GENERAL SPECIFICATIONS	106
LINE PRESSURE SPECIFICATIONS AND TAP LOCATION	<i>107</i>
TORQUE SPECIFICATIONS	108

ELECTRONIC COMPONENTS (CONT'D) TORQUE CONVERTER CLUTCH (TCC) SOLENOID

The Torque Converter Clutch (TCC) PC Solenoid is a "normally-low", electronic pressure regulator used to control the apply and release of the torque converter clutch based on current flow through its coil windings. The TCC PC solenoid regulates actuator feed limit fluid pressure to the TCC regulator valve, located in the lower valve body, and provides a signal pressure to shift the TCC control valve, located in the pump, to the apply position, as shown in Figure 12. When the TCM determines to apply the TCC, the TCC PC solenoid is commanded to specific pressures, dependent on vehicle operating conditions, resulting in a smooth apply or release of the TCC. The solenoid's ability to "Ramp" the TCC apply and release pressures result in a smoother TCC operation.

When vehicle operating conditions are appropriate to apply the TCC, the TCM increases current flow to allow the TCC PC solenoid to increase PCS TCC fluid pressure, to move the TCC control valve to the apply position, as shown in Figure 12, and move the

TCC regulator valve to the regulating position to regulate fluid pressure porportional to solenoid pressure. Release pressure is directed to exhaust, and regulated apply pressure is directed to the apply side of the converter clutch plate/damper assembly. The TCM then increases the pressure to control a slippage of 20-80 RPM between the clutch plate and converter cover. This "Ramping" procedure provides improved dampening of engine vibrations and allows the TCC to apply at low engine speeds in 2nd, 3rd, 4th, 5th and 6th gear.

Release of the TCC is achieved by decreasing TCC solenoid pressure to a level low enough to allow spring force to move the TCC control valve and TCC regulating valve to the release position.

There are also some operating conditions that may prevent or enable TCC apply, such as engine temp, transmission temperature, brake switch activation.

If the TCM detects that the TCC system is stuck ON or OFF, a DTC will be activated.

The TCC PC Solenoid is part of the Control Solenoid Body And TCM Assembly and is not serviced seperately.

Figure 12

DIAGNOSTIC TROUBLE CODE (DTC) IDENTIFICATION		
DTC	DESCRIPTION	DTC TYPE*
P0218	Transmission Fluid Overtemperature, Over 270°F for 10 minutes.	Α
P0562	System Voltage Low, 11 volts or less for 10 seconds.	Α
P0563	System Voltage High, Greater than 18 volts for 12 seconds.	Α
P0601	TCM (Internal), Read Only Memory (ROM).	Α
P0602	TCM, Not Programmed.	Α
P0603	TCM (Internal), Long term memory reset.	Α
P0604	TCM (Internal), Random Access Memory (RAM).	Α
P0634	TCM (Internal), Overtemperature.	Α
P0667	TCM (Internal), Temperature Sensor Performance.	Α
P0668	TCM (Internal), Temperature Sensor circuit voltage low.	Α
P0669	TCM (Internal), Temperature Sensor circuit voltage high.	Α
P0703	Brake Switch Circuit, signal is invalid for 4 seconds.	Α
P0711	Transmission Fluid Temperature (TFT), Sensor performance.	С
P0712	Transmission Fluid Temperature (TFT), Sensor circuit voltage low.	Α
P0713	Transmission Fluid Temperature (TFT), Sensor circuit voltage high.	Α
P0716	Input Speed Sensor (ISS), Sensor performance.	Α
P0717	Input Speed Sensor (ISS), Sensor circuit voltage low.	Α
P0719	Brake Switch Circuit, Circuit voltage low.	A
P0722	Output Speed Sensor (OSS), Sensor circuit voltage low.	С
P0723	Output Speed Sensor (OSS), Sensor intermittent.	В
P0724	Brake Switch Circuit, Circuit voltage high.	Α
P0729	Incorrect 6th Gear Ratio.	С
P0731	Incorrect 1st Gear Ratio.	Α
P0732	Incorrect 2nd Gear Ratio.	Α
P0733	Incorrect 3rd Gear Ratio.	Α
P0734	Incorrect 4th Gear Ratio.	Α
P0735	Incorrect 5th Gear Ratio.	Α
P0736	Incorrect Reverse Gear Ratio.	Α
P0741	Torque Converter Clutch (TCC), System Stuck OFF.	Α
P0742	Torque Converter Clutch (TCC), System Stuck ON.	В
P0751	Shift Solenoid (SS) 1 Valve Performance, Stuck OFF.	В
P0752	Shift Solenoid (SS) 1 Valve Performance, Stuck ON.	Α
*DTC TYPES		
A	- Emission-related, turns the MIL "ON" immediately after the 1st failure.	

B - Emission-related, turns the MIL "ON" after two consecutive drive cycles with failure.

C - Non-emission-related, no lamps and may display message on driver information center.

Figure 37

TRANSMISSION DISASSEMBLY EXTERNAL PARTS

- 1. Remove the torque converter, as shown in Figure 37.
- 2. Install holding fixture J-8763-B, as shown in Figure 37, using fixture adapter DT-47605 if necessary and is shown in place in Figure 38.
- 3. Rotate transmission in fixture so that converter housing is facing up and secure with locking pin in fixture base.
- 4. Allow any remaining transmission fluid to drain from the extension housing.
- 5. Rotate transmission so that bottom pan is facing up as shown in Figure 39.

Continued on Page 32

COMPONENT REBUILD TRANSMISSION CASE ASSEMBLY (CONT'D)

- 7. Remove park pawl actuator guide retaining pin and actuator guide, as shown in Figure 56.
- 8. Remove and discard the park pawl actuator guide "O" rings.
- 9. Install new park pawl actuator guide "O" rings and lube with a small amount of Trans-Jel®.
- 10. Install the park pawl actuator guide, as shown in Figure 56, ensuring you do not damage the "O" ring seals.
- 11. Install the actuator guide retaining pin into the case, as shown in Figure 56.
- 12. Install new rear case seal using seal installer, as shown in Figure 57.
- 13. Install new case plugs as necessary, as shown in Figure 58.

Componet Rebuild Continued on Page 41

Figure 56

Figure 58

Figure 76

4-5-6 CLUTCH HOUSING ASSEMBLY

- 11. Install the 4-5-6 clutch "wave" plate, as shown in Figure 78.
- 12. Install the 4-5-6 clutch plates beginning with a steel plate and alternating with friction plate until you have installed 6 of each, as shown in Figure 78.
- 13. Install the 4-5-6 clutch backing plate, as shown in Figure 78.
- 14. Install the 4-5-6 clutch backing plate selective snap ring, as shown in Figure 78.
- 15. Install and zero dial indicator on 4-5-6 clutch housing, as shown in Figure 79.
- 16. While one finger blocks top passage in turbine shaft, apply regulated air to the opposite top hole and observe dial indicator reading, as shown in Figure 79.
- 17. Change the selective snap ring as necessary, to get 1.28-1.89mm (.050" - .074"), using the chart in Figure 80

Continued on Page 52

Figure 78

Figure 79

AUTOMATIC TRANSMISSION SERVICE GROUP

REAR CARRIER AND OUTPUT SHAFT (CONT'D)

- 5. Disassemble the rear planetary carrier using Figure 124 as a guide.
- 6. Remove and discard the center support roller bearing using a slide hammer, as shown in Figure 125.

Note: Always install new roller bearing (485).

7. After bearing removal, remove parts, as shown in Figure 124.

Note: The last bearing is a captured bearing and is not serviced. If this bearing (491) is damaged, it will require a carrier.

Continued on Page 76

Figure 124

Figure 125

DT-47786 LIFTING TOOL

FINAL ASSEMBLY

INTERNAL COMPONENTS

- 1. Rotate transmission case in fixture so that rear of preassembled case is facing up, as shown in Figure 153.
- 2. Lubricate rear case bushing and rear seal inside diameters with a small amount of Trans-Jel®, as shown Figure 153.
- 3. Install the output shaft to case thrust bearing into case, in the direction shown in Figure 154.
- 4. Ensure the DT-47786 lifting tool is completely threaded into the output shaft assembly, as shown in Figure 154. Due to the weight of the assembly, incomplete threading may let the assembly break free, causing damage/injury.
- 5. Install the pre-assembled output shaft assembly into the case, as shown in Figure 154, using the DT-47786 lifting tool.

Continued on Page 90

Figure 153

AUTOMATIC TRANSMISSION SERVICE GROUP

OUTPUT SHAFT AND REAR PLANETARY ASSEMBLY

OUTPUT SHAFT TO CASE THRUST BEARING

Figure 171

FINAL ASSEMBLY INTERNAL COMPONENTS (CONT'D)

- 39. If not already done, install new filter seal into oil pump bore, as shown in Figure 172, using the proper seal driver.
- 40. Install a new oil filter assembly, as shown in Figure 172.
- 41. Install the detent spring and roller, as shown in Figure 172, torque bolt to 12 N·m (106 in.lb.). *Note: Ensure roller is centered over inside detent lever.*

Continued on Page 98

6L80 Transmission General Specifications		
RPO Codes	MYC	
Production Location	Ypsilanti MI (USA)	
Transmission Drive	Rear Wheel Drive	
1st Gear Ratio	4.027	
2nd Gear Ratio	2.364	
3rd Gear Ratio	1.532	
4th Gear Ratio	1.152	
5th Gear Ratio	0.852	
6th Gear Ratio	0.667	
Reverse Gear Ratio	3.064	
Torque Converter Size	258/300 mm	
Pressure Taps	Line Pressure	
Fluid Type	Dexron VI ®	
Case Material	Cast Aluminum	
6L80 Net Weight	100kg (220 lb.)	

6L80 Pump Selective Specifications

Important

Rotor and slide must be chosen from the same size classification as the oil pump body. Allowable rotor and slide to oil pump body end play

Slide to Pump Body Face 0.020-0.051 mm (0.0008-0.0020 in.)

Rotor to Pump Body Face 0.020-0.038mm (0.0008-0.0015 in.)

The oil pump assembly has "selective" rotor and slide components. These components are chosen based on pump body dimensions. Oil pump rotor and slide components are available in three size classifications (1, 2, 3) with the following tolerances.

PUMP POCKET DEPTH				
SIZE CLASSIFICATION	THICKNESS (MM)	THICKNESS (IN)		
1	17.980-17.994	.7079"7084"		
2	17.994-18.007	.7084"7089"		
3	18.007-18.003	.7089"7100"		
ROTOR SELECTION				
ROTOR SELECTION	THICKNESS (MM)	THICKNESS (IN)		
1	17.948-17.961	.7066"7071"		
2	17.961-17.974	.7071"7076"		
3	17.974-17.987	.7076"7081"		
SLIDE SELECTION				
SLIDE SELECTION	THICKNESS (MM)	THICKNESS (IN)		
1	17.948-17.961	.7066"7071"		
2	17.961-17.974	.7071"7076"		
3	17.974-17.987	.7076"7081"		

CLUTCH BACKING PLATE RETAINING RING SPECIFICATIONS

Т

1-2-3-4 CLUTCH			
THICKNESS	O.D. COLOR		
2.15-2.25mm (.085"089")	YELLOW		
2.42-2.52mm (.095"099")	NONE		
2.69-2.79mm (.106"110")	PURPLE		
2.96-3.06mm (.117"120")	LIGHT BLUE		
3.23-3.33mm (.127"131")	ORANGE		

4-5-6 CLUTCH

THICKNESS		O.D. COLOR
1.61-1.71mm	(.063"067")	YELLOW
2.02-2.12mm	(.080"083")	NONE
2.44-2.54mm	(.096"100")	PURPLE

3-5 REVERSE CLUTCH

THICKNESS	O.D. COLOR	
	GRAY	
1.88-1.98mm (.074"078")	LIGHT GREEN	
2.15-2.25mm (.085"089")	YELLOW	
2.42-2.52mm (.095"099")	NONE	
2.69-2.79mm (.106"110")	PURPLE	

Important: After measuring clutch pack travel, determine if the measurement is within the specification. If the measurement is not within the specification, measure the thickness of the existing snap ring, and then choose a thicker or thinner snap ring that will bring the measurement within specification.