TABLE OF CONTENTS

THE FIRST PART GENERAL INFORMATION
SECTION 1 GENERAL INFORMATION
SECTION 2 SCHEDULED MAINTENANCE 22
THE SECOND PART ENGINE
SECTION 3 ENGINE 40
SECTION 4 ENGINE MECHANICAL
SECTION 5 ENGINE COOLING SYSTEM
SECTION 6 ENGINE LUBRICATE SYSTEM
SECTION 7 ENGINE MANAGE SYSTEM110
THE THIRD PART CLUTCH TRANSMISSION DIFFERENTIAL
SECTION 8 CLUTCH
SECTION 9 TRANSMISSION
SECTION 10 GEAR SHIFTING CONTROL
SECTION 11 PROPELLER SHAFT
SECTION 12 DIFFERENTIAL
THE FOURTH PART SUSPENSION STEERING BRAKE
SECTION 13 SUSPENSION
SECTION 14 MANUAL RACK AND PINION
SECTION 15 BRAKES225
THE FIFTH PART BODY AND ELECTRICAL SERVICE
SECTION 16 ELECTRICAL SYSTEM
SECTION 17 BODY ELECTRICAL SYSTEM
SECTION 18 BODY SERVICE
THE SIXTH PART HEATER AND AIR CONDITIONING
SECTION 19 HEATER AND COOLING
SECTION 20 SEAT BELT AND AIR BAG SYSTEM

METRIC FASTENERS STANDARD TIGHTENING TORQUE

Each fastener should be tightened to the torque specified in each section of this manual.

If no description or specification is provided, refer to the following tightening torque chart for the applicable torque for each fastener. When a fastener of greater strength than the original one is used, however, use the torque specified for the original fastener.

NOTE:

• For the flanged bolt, flanged nut and self-lock nut of 4T and 7T strength, add 10% to the tightening torque given in the following chart.

• The following chart is applicable only where the fastened parts are made of steel light alloy.

THREAD DIAMETER(STRENGTH	mm)	4	5	6	8	10	12	14	16	18
equal to 4T strength torque	N·m	1.5	3.0	5.5	13	29	45	65	105	160
	kg∙m	0.15	0.30	0.55	1.3	2.9	4.5	6.5	10.5	16
	lb∙ft	1.0	2.5	4.0	9.5	21.0	32.5	47.0	76.0	116.0
flangeless equal to	N·m	2.4	4.7	8.4	20	42	80	125	193	280
6.8 strength torque	kg∙m	0.24	0. 47	0.84	2.0	4.2	8.0	12.5	19.3	28
Office of the	lb•ft	2.0	3. 5	6.0	14. 5	30. 5	58.0	90. 5	139. 5	202. 5
flange equal to 6.8	N·m	2.4	4.9	8.8	21	44	84	133	203	298
strength torque	kg∙m	0.24	0. 49	0. 88	2.1	4.4	8.4	13.3	20.3	29.8
	lb•ft	2.0	3.5	6.5	15.5	32.0	61.0	96.5	147.0	215.5
flangeless equal to	N·m	2.3	4.5	10	23	50	85	135	210	240
7I strength torque	kg∙m	0.23	0.45	1.0	2.3	5.0	8.5	13.5	21	24
S 5	lb∙ft	2.0	3. 5	7.5	17.0	36.5	61.5	98.0	152.0	174.0
flangeless equal to	N·m	3.1	6.3	11	27	56	105	168	258	373
ö.ö strength torque	kg∙m	0.31	0. 63	1.1	2.7	5.6	10.5	16.8	25.8	37.3
S S 6	lb∙ft	2.5	4.5	8.0	19.5	40.5	76.0	121.5	187.0	270.0
flange equal to 8.8 strength torque	N·m	3.2	6.5	12	29	59	113	175	270	395
AAR	kg∙m	0.32	0.65	1.2	2.9	5.9	11.3	17.5	27	39. 5
5 5 V	lb∙ft	2.5	5.0	9.0	21.0	43.0	82.0	126.5	195.5	286.0

Tightening Torque Table

5	Super grease (E) (99000-25050)	• Apply the steering case (rack and pinion) interior parts.
6	Gear oil SAE Transmission oil 75W-85 GL-4 rank 75W-85 GL-5 Differential oil rank 75W-85 GL-5 SAE viscosity $C_{1-30-20-10}$ $75W-80,75W-90$ $C_{1-30-20-10}$ F_{1-22-4} T_{14}	 Transmission case 4speed : 1.0l[2.1/1.8 (American/British) pint] 5speed : 1.3l[2.7/2.3 (American/British) pint] Transmission gear and bearing. Differential gear case(hyperbola gear oil) 1.3l[2.7/2.3(American/British)pint]
7	Silicon grease (99000-25190)	• Steel plate spring bush
8	4 Stroke engine oil Recommend to use SE, SF, SG or SH engine oil. Condign engine oil viscosity chart $\frac{20W-50}{15W-40,15W-50}$	 Engine oil pan: (Be used in the period of replacing engine oil) Crankshaft neck and pulley connecting rod big end and little end bearing Camshaft neck Valve rocker shaft Oil pump gear Piston and piston ring Engine oil seal Valve rod Accelerate pedal, brake and clutch pedal axes Door lock and hinge Shunt gear

1. PCV hose 2. PCV valve

Engine idle speed inspection

Check the rotate speed of idle speed adjust as necessary. A bout the steps of engine idle speed inspection and adjustment, refer to engine service.

Engine Type	DA465QE/2F	DA471Q	K14
idle speed	850 ± 50 r/min	900r/min	

Fuel Evaporative Emission Control System Inspection

Crankcase PCV Valve Inspection

Ventilation hose and connector

Check crankcase ventilation hose and PCV hose for leaks, cracks or clog. If there is any bad situation, then fix or replace. Check hose and make sure it is close and firm.

PCV Valve Inspection

1) Disconnect PCV valve hose from 3-way joint.

2) Run engine at idle. Place your finger over end of PCV valve to check for vacuum. If there is no vacuum, check for clogged valve. Replace as necessary.

Stop engine and connect PCV valve hose to
 3-way joint.

4) PCV Valve replacement: For validly protecting the vehicle exhaust system, use the PCV valve type and factory which is appointed by my company.

Fuel Evaporative Emission Control System

1) Visually inspect hoses for cracks, damage, or excessive bends. Inspect all clamps for damage and proper position.

2) If malfunction is found, repair or replace.

3) Check EVAP canister for operation and clog, refer to "in Section 3 ".

Condition	Possible	Correction
Erratic	Ignition system	
	1. Improper ignition timing.	Adjust
	2. Defective spark plug, or improper gap.	Replace or adjust
	3. High tension cord bad insulation.	Replace
	Electricity injection system	
	1. Step motor	Check circuit or replace
	2. Throttle position sensor	Check circuit or replace
	3. ECU	Replace
	4. Intake temperature pressure sensor	Check circuit or replace
	Others	
	1. Air filter dirty and clogged	Clean
	2. Intake system leak	Adjust
	3. Exhaust manifold have carbon deposit	Clean or replace
	4. Clearance of valve improperly adjusted	Adjust
	5. Valves not seating tight	Repair
	6. Cylinder gasket break	Replace
Abnormity	Ignition system	
slap	1. Spark plug overheating	Replace
(knocking、	2. Improper ignition timing	Adjust
advanced	Fuel system	
sparking 、	1. Fuel quality is not good	Replace
combustion	Electricity injection system	
lag)	1. knock meter (or have).	Replace
	2. Intake temperature pressure sensor	Replace
	Others	
	1. Carbon deposit on piston head or cylinder	Clean
	head	
	2. Abnormity cylinder cushion	Replace
	3. Improper valve clearance	Adjust
	4. Valve lock	Repair or replace
	5. Weakened valve spring	Replace
	Ignition system	
	1. Improper ignition timing	Adjust
	2. Spark plug calorie value ineptitude	Replace
	Exnaust system	Olasa
	1. Clogged exhaust pipe	Clean
Overheating	Cooling system	Defill and sheak sizela
	1. No enough coolant	
	2. Loose of broken water pump beit	Adjust of replace
		Replace
	5 Leaky radiator	Repair or replace
	J. LEaky laulaiUl	

Fig. 3-082

Install cylinder head onto cylinder block. Tighten cylinder head bolts gradually with torque wrench to specified torque.

Fig. 3-083

Camshaft

Apply engine oil to cams and journals on camshaft, and oil seal on cylinder head. Then install it to cylinder head from transmission case side.

Be careful not to leave out the thrust plate when installing the camshaft. After setting this shaft in place, with its thrust plate properly fitted, turn the shaft by hand to be sure it rotates smoothly.

Fig. 3-084

\pm The Work Flow Of Lubricate System (chart 5–1)

Fig. 13-4-1

Separating Upper Case from Lower Case

1) Remove clutch release bearing from transmission input shaft.

2) Remove input shaft bearing retainer bolts and pull out retainer by using 3 conventional 6 mm bolts.

Fig.. 13-4-2

3) Remove gear shift lever case and speed meter driven gear case.

4) Remove bolts securing extension case to transmission case and take off extension case.

Fig.. 13-4-3

图 1 Gear shift and select cables

Bevel pinion bearing preload adjustment

The bevel pinion, as installed in the normal manner in the carrier, is required to offer a certain torque resistance when checked with the use of a prescribed torquing pulley (special tool \triangle) as shown in the following figure. This resistance is a "preload," which is due to the tightness of the two tapered roller bearings by which the pinion is held in the carrier. And this tightness is determined primarily by the thickness of the adjusting collar plus a shim. Check the preload and, if the preload measurement is off the specified range indicated below, increase or decrease shim thickness. The method is as follows:

1) Tentatively install pinion in carrier, using adjusting collar and a 1 mm thick shim, and tighten the nut to secure splined yoke. Torque the nut to the following specification.

2) Put on torquing pulley (special tool) and give a pull, as left shown, and read spring balance indication just when the pulley begins to turn. The reading is a starting torque, and is required to be within the specified torque range.

3) Increasing shim thickness decreases this preload, and vice versa. Four size shim stock available for "mounting distance" adjustment, mentioned above, is meant to be used in producing a proper shim thickness in this preload adjustment, too.

NOTICE:

• When tentatively installing pinion in carrier, be sure to oil bearings lightly with gear oil, and to leave out the oil seal.

• Make a note of the starting torque.			
Pinion bearing	5.0—13.0kg—cm		
preload	(4.3—11.2 1b—in)		
Starting torque	1.0—2.6kg		
(with pulley)	(2.2—5.7 1b)		

Make a note of the starting to

condition when tightening them to specified torque (68 \pm 7N.M) .

6) Check toe-in setting, adjust as required

Knuckle

Removal

1) Hoist vehicle and remove wheel.

2) Remove wheel hub.

3) Disconnect tie-rod end from knuckle with remover.

4) Remove ball stub bolt from knuckle, then remove strut bracket bolts from strut bracket.

5) Remove knuckle.

Installation

1) Install knuckle to ball stud on suspension arm and strut bracket. Align knuckle bolt hole with ball stud groove as shown and install ball stud bolt. Tighten each bolt and nuts to specified torque.

Torque: 55±5.5N.M 95±10N.M

2) Connect tie-rod end to knuckle and tighten tie-rod end castle nut to specified torque (50 \pm 5N.M) .

NOTE:

As tight tie-rod end nut, push the tie-rod up with garage jack to prevent ball stub from rotation.

5) Have vehicle off hoist and in non-loaded

NOTE:

When servicing steering column or any column-mounted component, remove steering wheel. But when removing steering column simply to gain access to instrument panel components, leave steering wheel installed on steering column.

INSTALLATION

1) Be sure that front wheels and steering wheel are in straight forward state and insert lower joint into steering pinion shafts

2) Tighten steering shaft lower joint bolts to specified torque.

3) Apply grease to steering shaft seal "A", and install steering shaft seal to dash panel, as shown in left figure .

4) Align flat part "B" of lower joint shaft with bolt hole "C" of steering column joint as shown, then insert lower joint shaft into steering column joint.

5) Tighten steering column mounting bolts to specified torque.

6) Install combination switch.

7) Connect harness of combination switch and ignition switch with connector.

8) Install combination switch upper and lower cover.

9) Install steering wheel, if necessary.

10) Connect the negative cable with the battery.

CAUTION:

Once the steering column is removed from the vehicle, the column is extremely susceptible to damage. Dropping the column assembly on its end could collapse the steering shaft or loosen the plastic shear pins which maintain column length.

Leaning on the column assembly could cause it to bend or deform. Any of the above damage could impair the column's collapsible design.

Steering column mounting nuts should not be loosened with steering shaft joint upper side bolt tightened as this could cause damage to shaft joint bearing.

Tightening torque

Fastening parts	kg.m
1. Disc bolt	4.0-6.0
2. Steering knuckle castle	15 0-25 0
nut	10.0 20.0
3. Flexible hose bolt	2.0-2.5
4. Caliper bolt	7.0-10.0
5. Caliper pin bolt	3.0-3.8
6. Caliper pin	5.0-6.0
7. Wheel nut	5.0-8.0

Front Brake Flexible Hose

Connect flexible hose to caliper as show below and tighten hose bolt to specification.

NOTICE:

After completing installation, fill reservoir with brake fluid and bleed brake system. Perform brake test and check each installed part for oil leakage.

Inspection for After Installing Front Brake

Mount tires and make certain that they rotate smoothly, with a force of less than 3.3 kg (7.3 lb).

NOTICE:

For the above check, the following must be observed.

1) Jack up front wheels, both right and left, off the ground.

2) The below figure shows outer periphery of tire.

3) Be careful not to depress brake pedal when checking tire for rotation.

6) When bubbles stop, depress and hold brake pedal and tighten bleeder plug.

7) Then attach bleeder plug cap.

8) After completing bleeding operation, apply fluid pressure to pipe line and check for leakage.

9) Replenish fluid into reservoir up to specified level.

10) Check brake pedal for "sponginess". If found spongy, repeat entire procedure of bleeding.

INSPECT BOOSTER OPERATION

There are two ways to perform this inspection, with and without a tester. Ordinarily, it is possible to roughly determine its condition without using a tester.

NOTE:

For this check, make sure that no air is in hydraulic line.

[INSPECTION WITHOUT TESTER] Check Air Tightness

1) Start engine.

2) Stop engine after running for 1 to 2 minutes.

3) Depress brake pedal several times with the same load as in ordinary braking and observe pedal travel. If pedal goes down deep the first time but its travel decreases as it is depressed the second and more times, air tightness is obtained.

4) If pedal travel doesn't change, air tightness isn't obtained.

NOTE:

If defective, inspect vacuum lines and sealing parts, and replace any faulty part.

When this has been done, repeat the entire test.

RADIO 、 CIGAR LIGHTER AND ELECTRONIC LOCK

