
GROUP 01

ENGINE

INDEX

ENGINE .01 - 5 - Generalities .01 - 5 - Structure .01 - 5 - Organs of movement .01 - 6 - Auxillary organs .01 - 6	
LUBRICATION	
ENGINE REMOVAL/INSTALLATION	
BENCH OVERHAUL OF ENGINE 01-34 - Engine disassembly and reassembly 01 -35 - Removal of components - left-hand side 01-35 - Removal of components - right-hand side 01-35 - Removal of gearbox-differential group 01-37 - Removal of clutch plate 01-39 - Removal of air intake box 01-39 - Removal of compressor 01-41 - Removal of alternator 01-42 - Removal of thermostatic group 01-45 - Removal of fuel supply manifold 01-46	
- Removal of timing belt01-46	

	 Removal of hydraulic belt 	
	tensioner	01-47
	 Removal of timing 	
	pulley	01-48
	- Removal of cylinder head	
	- Removal of oil sump	
	- Removal of oil pump	01-54
	- Disassembly of oil pump	01-55
	 Removal of cylinder liners 	
	and pistons	01-55
	- Removal of water pump .	01-58
	- Removal of front cover	01-59
	- Removal of flywheel	01-59
	- Removal of crankshaft	01-60
_	Disassembly of cylinder head	ds 01-62
	- Preliminary operations	01-62
	- Removal of oil pump drive	1
	pulley (Right-hand cylinde	r
	head only)	01-63
	- Removal of camshaft	
	androcker arm support sh	aft01-64
	- Disassembly of valves	
	 Removal of intake 	
	manifold	01-68
_	Cylinder heads checks and	
	inspections	01-69
	- Checking lower plane of	
	cylinder heads	01-69
	- Checking cylinder head	
	bushings	01-70
	3	

REPAIR MANUAL

ENGINES

- Engine 2492 cm³ (code AR 67301)

GROUP 01 - ENGINE MAIN MECHANICAL UNIT

GROUP 04 - FUEL SYSTEM

GROUP 05 - ENGINE IGNITION, STARTING AND CHARGING

GROUP 07 - ENGINE COOLING SYSTEM

01-2

-	Withdrawl of bushing «A»
	(For oil pump drive gear)01-71
-	Installation of bushing «A»
	(For oil pump drive gear)01-71
-	Reaming of bushing «A»
	(For oil pump drive gear)01-72
-	Withdrawl of bushing «B»
	(For oil pump drive pulley shaft) .01-72
-	Installation of bushing «B»
	(For oil pump drive pulley shaft) .01-73
-	Reaming of bushing «B»
	(For oil pump drive pulley shaft) .01-73
-	Withdrawl of bushing «C»
	(For camshaft drive pulley hub)01-74
-	Installation of bushing «C»
	(For camshaft drive pulley hub)01-74
-	Replacing valve seatings 01-75
-	Play between valve guides
	and valve stem01-77
-	Replacing valve guides01-78
-	Valves01-80
-	Turning of valve seats01-80
-	Valve springs01-81
-	Valve cups seatings and valve
	cups - intake side 01-82
-	Valve cups seatings and valve
	cups - exhaust side01-83
-	Rocker arms and rocker arm
	shaft01-83
-	Camshafts and
	supports
	Checking axial play of
	camshafts01-85
CI	necking and inspection of engine
	ock01-86
-	Main journal caps 01-87

	-1	Checking cylinder liner
		protrusion
	-	Main and rod bearings
		- thrust half bearings01-89
	-	Crankshaft01-90
	-	Replacing engine flywheel
		ring gear
	-	Cylinder liners01-93
	-	Pistons and gudgeon pins01-94
	-	Seal and oil scraper rings01-95
	-	Rods
	-	Checking weight difference
		between single pistons and
		single rods01-98
	-	Checking and inspection of
		oil pump01-99
	-	Overhaul of hydraulic belt
		tensioner01-101
-	In	dications regarding refitting01-104
	-	Checking valve seals01-104
	-	Positioning the rocker arm
		support shaft01-104
	-	Checking and setting valve
		clearance01-105
	-	Refitting crankshaft01-108
	-	Checking crankshaft axial
		play
	-	Refitting crankshaft rear oil
		seal
	٠.	Refitting cylinder liners,
		pistons and rods 01-111
	-	Refitting cylinder heads01-115
	-	Installation of timing drive belt
		and checking timing01-117
		Cylinder compression test01-119

	-	в.
١	-	
	-	ы
	-	•

CHECKS AND INSPECTIONS

- Engine oil minimum pressure

ELECTRICAL COMPONENTS01-120

- Engine oil pressure gauge01-120

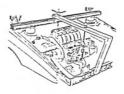
- Engine oil minimum level sensor ...01-120

TECHNICAL CHARACTERISTICS AND SPECIFICATIONS01-146

engine01-146

- Technical characteristics of the

ENGINE MAIN MECHANICAL UNIT


	- Complete engine block
	- Rod - piston assembly01-15
	- Cylinder heads
	 Angular values of the actual
	timing diagram01-15
	- Fluids and lubricants01-15
	- Sealants and fixatives01-15
	- Abrasives01-15
	- Tightening torques01-10
	SPECIFIC TOOLS01-1
	FAULT DIAGNOSIS AND
۱	CORRECTIVE INTERVENTIONS01-1
١	
١	

01-3

Pag. 01-9

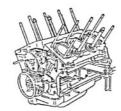
ENGINE MAIN MECHANICAL UNIT

ENGINE DISASSEMBLY AND REASSEMBLY

Pag. 01-35

DISASSEMBLY OF THE CYLINDER HEADS

Pag. 01-62


CYLINDER HEAD - INSPECTIONS AND CHECKS

Pag. 01-69

ENGINE BLOCK CHECKS AND INSPECTION

Pag. 01-86

INDICATIONS FOR REASSEMBLY

Pag. 01-104

ELECTRICAL COMPONENTS -CHECKS AND INSPECTION

Pag. 01-120

"ON VEHICLE" OPERATIONS

Pag. 01-122

GENERALITIES

The engine is of the six 60° V mounted cylinder type in light alloy and has a total cubic capacity of 2492 cm³ with static ignition and injection controlled by a single BOSCH MOTRONIC M 1.7 control unit.

From a dynamic point of view the "V" arrangement and the 60° angle make the engine extremely compact and well balanced.

With a piston stroke of 68,3 mm and a bore of 88 mm, the engine is of the super square type (stroke and bore ratio lower than 1), which permits a better arrangement of the valves and an optimal filling of the cylinders (high volumetric ratio).

The clutch-gearbox-transmission assembly is connected towards the rear of the engine and forms and integral part of the engine.

The engine is installed in the front of the vehicle and is arranged transversally with a 14° inclination forwards. It is supported by "suspended" type attachments and fixed to the body by two supports with flexible damping and to the suspension cross member by a third.

To reduce the shaking of the engine to a minimum, a retaining rod is mounted on the body.

The engine described below conforms to the "USA 83" exhaust emissions limits.

STRUCTURE

Engine block:

a single block in light aluminium and silicon alloy with high mechanical resistance and thermal conductivity. The crankshaft is supported by five main supports.

Grooves in the wall of the engine block permit the passage of the cooling liquid and oil.

Jets which spray oil to cool the pistons are located at the base of the cylinders.

Cylinder liners:

these, in cast iron, are of the low-slung type and are directly reached from the outside by the cooling liquid for a more rational heat dissipation (humid).

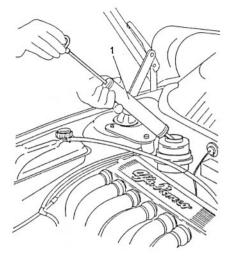
The dimensions of the cylinder liners permits the gas to be contained and avoids deformation.

The cylinder liners are already coupled with their relative pistons when supplied and are divided into three dimensional classes.

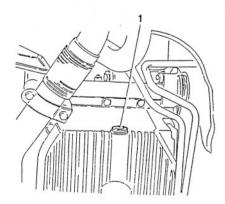
Cylinder heads:

these are of the monilithic type, compact fused in shell of aluminium and silicon alloy.

The 47° "V" position of the valves gives the combustion chamber and optimal configuration.

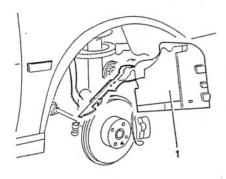

Each cylinder head is supported by a camshaft for the intake valves and a system of rods and rocker arms for the control of the exhaust valves.

Oil sump:

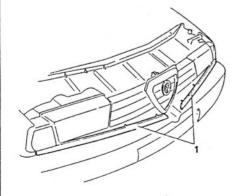

this is of light aluminium formed by die-casting and is completely surrounded by anti-lapping panels

A gasket with a silicon rubber insert is fitted between the sump and the engine block.

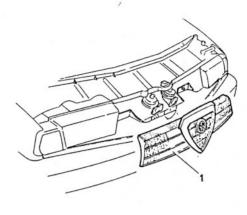
1. Empty the power steering oil tank using a suitable

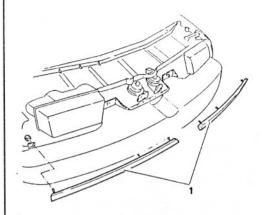


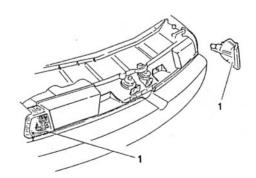
 Drain off the engine oil by unscrewing the reltive cap on the oil sump (see GROUP 00).

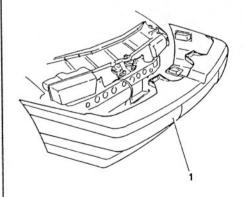


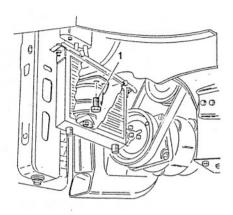
- Remove the front wheels.
- 1. Remove the central engine protection covers through the right and left wheel arches.


01-12

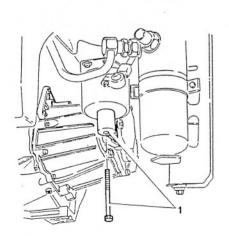

1. From the centre, detatch the two strips of grill trim.




Unscrew the side nut securing the two strips of trim to the body and remove them.


 Remove the front direction indicators (see GROUP 40).

1. Remove the front bumper (see GROUP 75)



 Disconnect the timing side engine mounting from the body.

Disconnect the engine support bracket on the gear-

box side from the hydraulic support.

Λ

CAUTION:

To prevent the electric cables from getting in the way during engine removal, disconnect them from the cable clamps and move them away from the engine.

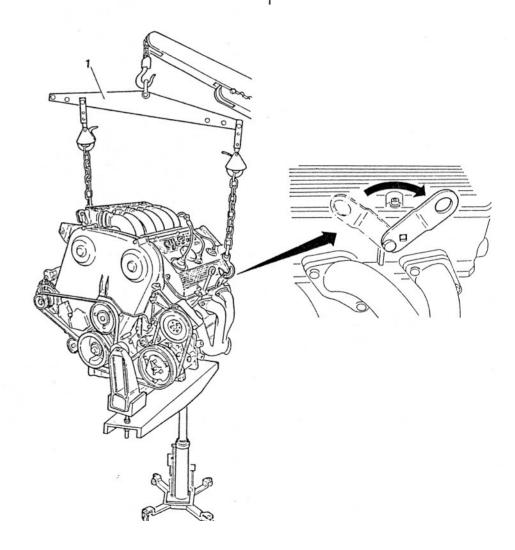
 Lower the hydraulic jack and remove the engine group from the engine compartment.


CAUTION:

Before lowering, check that all cables and hoses have been disconnected.

CAUTION:

Take all necessary precautions to avoid damaging components.

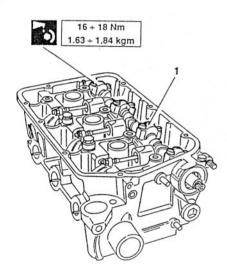

 Support the engine group with a hydraulic lift in addition to the hydraulic jack used for engine removal. The following indications should be heeded:

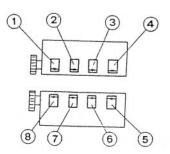
 Rotate the left side engine support bracket and balance the weight of the engine by adjusting the chain hooks attached to the swing bar as shown in the diagram.

CAUTION:

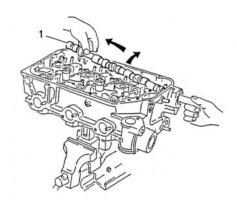
To move the engine use a hydraulic crane after disenganging the supporting hydraulic Jack.

PA4655B2000000


7-1991


REMOVAL OF CAMSHAFT AND ROCKER ARMS SUPPORT SHAFT

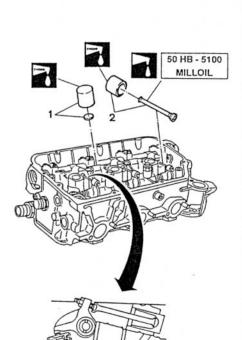
1. Remove the camshaft caps.

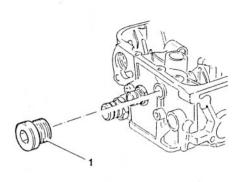


The caps are numbered in sequence (1, 2, 3 and 4 on the right-hand cylinder head; 5, 6, 7 and 8 for the left-hand cylinder head). On installation, replace the caps in the same order.

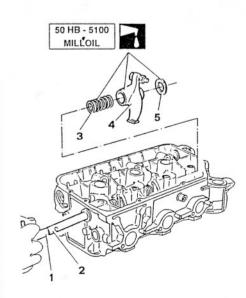
1. Remove the camshaft by first lifting the rear end, and then withdrawing it as indicated by the arrows in the diagram.

CAUTION:


Proceed with care; the cams and support mating surfaces are easily damaged.

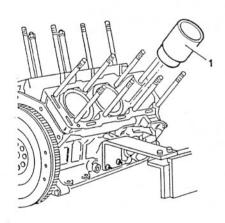

- 1. Withdraw the intake side valve cups and relative valve clearance adjustment shims.
- 2. Withdraw the exhaust side valve cups and relative rocker arm rods.

NOTE: Arrange the components in sequence order if they are to be re-used.

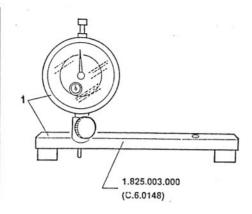

NOTE: For checking and adjustment of valve clearance follow the indications given in the relevant paragraph.

1. Remove the rocker arm shaft plug.

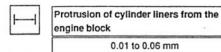
- 1. Screw a suitable tool onto the threaded tug of the rocker arm shaft.
- 2. Gradually withdraw the rocker arm shaft.
- 3. Remove the springs.
- 4. Remove the rocker arms.
- 5. Remove the washers.

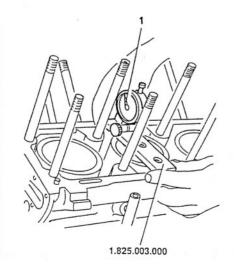


CYLINDER LINER PROTRUSION CHECK


Without seal rings

NOTE: This procedure, a preliminary check to verify the correct mating of the cylinder liners with the engine block, should be carried out without seal rings and the cylinder liner retainer, which tightened to the correct torque would eliminate the thickness, is not therfore required.

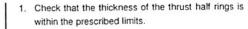

1. Insert the cylinder liners into the engine block ensuring that they reach the stop limit.



1. Apply a centesimal dial gauge to tool N° 1.825.003.000 (C.6.0148) and reset them on a datum plane.

1. Place tool N 1.825.003.000 (C.6.0148) on the engine block, first on one side and then on the other, so that the dial gauge probe rests on the edge of the liner; then check that the protrusion is within the prescribed limits.

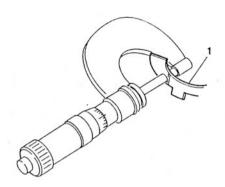
MAIN AND ROD BEARING HALVES THRUST HALF RINGS

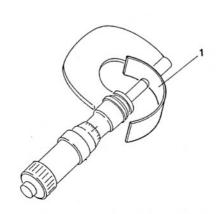

- Clean the main and rod bearing halves and visually check for scoring or traces of binding. Replace all bearing halves if traces of wear are detected.

NOTE: Coupling between the main and rod bearing halves and the crankshaft must be carried out by matching the parts of the same dimensional class identified by dots of the same colour on the side of the bearing half and on the relevant crankshaft journal.

1. Using a micrometer, measure the thickness of the bearing halves and check that they are within the prescribed limits.

Thickness	of bearin	g halves
RED	MAIN	1.833 to 1.839 mm
(A)	ROD	1.737 to 1.745 mm
BLUE	MAIN	1.839 to 1.845 mm
(B)	ROD	1.741 to 1.749 mm
GREEN	MAIN	1.845 to 1.851 mm
(C)	ROD	

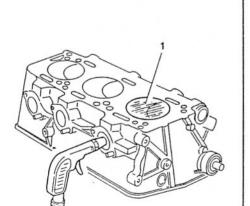




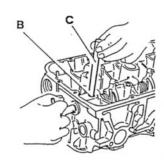
ENGINE MAIN MEC 'ANICAL UNIT

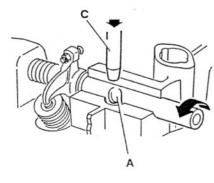
Thickness of thrust ring halves

2.310 to 2.360 mm


INDICATIONS FOR REASSEMBLY

For reassembly, reverse the procedure followed for disassembly except where otherwise stated.


VALVE LEAKAGE TEST


- Insert the spark plugs in their seats.
- Pour some petrol into one of the combustion chambers so that it just covers the valve heads.
- Blow low-pressure air into the intake and exhaust ports and check that no bubbles form in the petrol; if there are bubbles, check for correct assembly and grind the valve seats again if necessary.

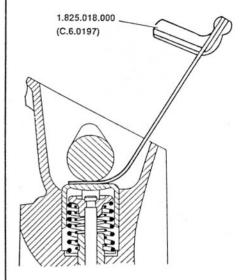
CORRECT POSITIONING OF THE ROCKER ARM SHAFT

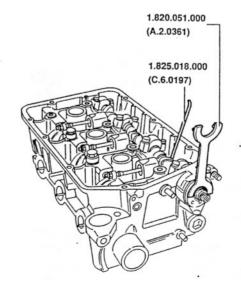
 After reassembling the washers, rocker arms and springs, rotate the shaft to alin notches "A" with the holes "B" in order to permit ther passage of the cylinder head support studs. Use pin "C" (diam. 12mm) to ensure correct alignment.

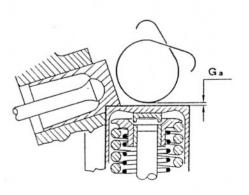
CHECKING AND ADJUSTMENT OF VALVE CLEARANCE

Intake valve clearance check

After installation of the carnshaft, check the clearance of the intake valves as follows:

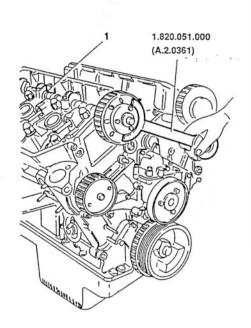

- temporarily install the timing system drive toothed pulley hub.
- using tool N* 1.820.051.000 (A.2.0361) for the rotation of the camshaft and feeler gauge N* 1.825.018.000 (C.6.0197), checkthat the clearance "Ga" between the cam heel radius and valve cups is within the prescribed limits.

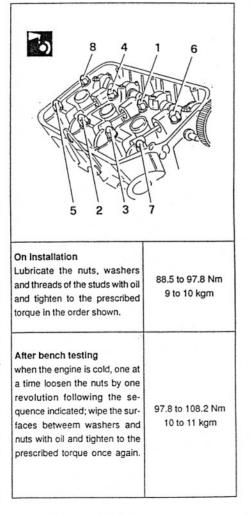

If not, replace the intake valve caps with others of a suitable thickness.



Valve clearance intake side

 $G_a = 0.475$ to 0.500 mm

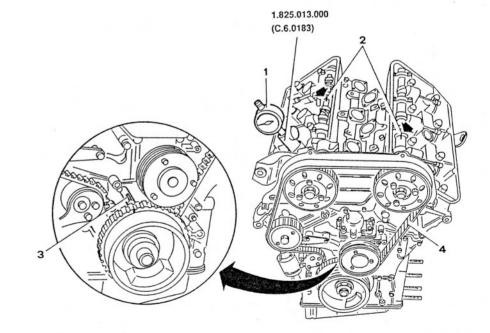



01-116

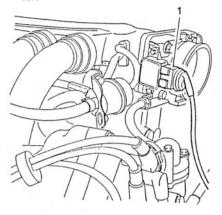
 Using lever tool N* 1.820.051.000 (A.2.0361) rotate the camshaft of each cylinder head to align the timing marks on the camshaft to those on the camshaft caps.

NOTE: On the right-hand cylinder head, the timing mark is located on cap N° 3, while on the left cylinder head that mark is located on cap N° 7.

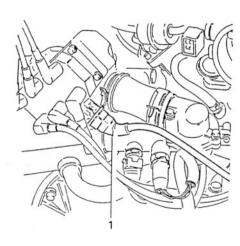
- Install the cylinder heads on the engine block.
- Lubricate the nuts and washers with engine oil and tighten, in two or three stages, the eight nuts securing each cylinder head following the indications given in the table.

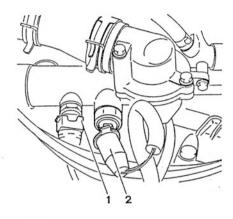


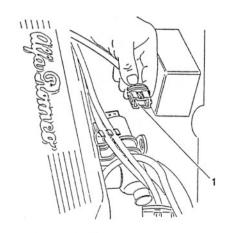
-117

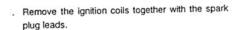

INSTALLATION OF TIMING BELT AND CHECKING OF ENGINE TIMING

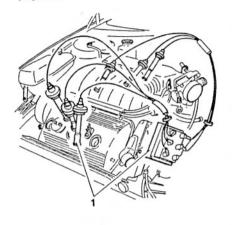
- Install tool N* 1.825.013.000 (C.6.0183) complete with dial gauge, into the seat of the first cylinder spark plug.
- Rotate the crankshaft in the direction of normal rotation and bring the piston of the first cylinder to the exact T.D.C. in the firing phase.
- Check that the marks engraved on the camshafts are aligned to those on the relative caps.

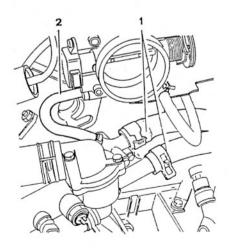

- Check that the reference marks on the phonic wheel are aligned with the reference pin on the front cover of the engine block.
- 4. Fit the timing belt keeping the arms under tension and following the order indicated below:
 - 1*- Crankshaft toothed pulley
 - 2*- Left cylinder head toothed pulley
 - 3'- Right cylinder head toothed pulley
 - 4'- Oil pump drive toothed pulley
 - 5°- Hydraulic belt tensioner pulley

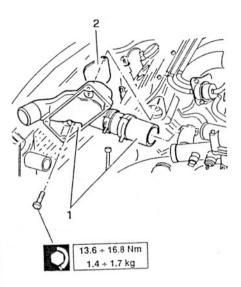

Disconnect the throttle valve potentiometer connection.

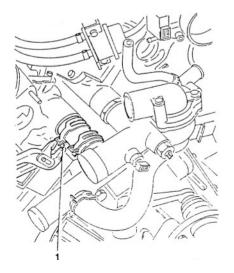

1. Disconnect the ignition coil connection.

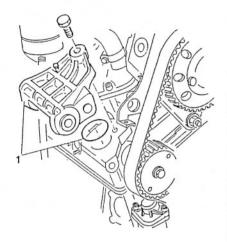


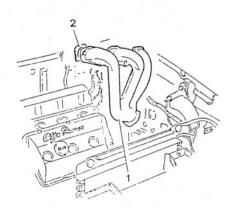

- Disconnect electrical connection from the engine coolant temperature sensor (NTC).
- Disconnect the electrical connection from the engine coolant temperature indicator sender and the maximum temperature warning light contact connections.

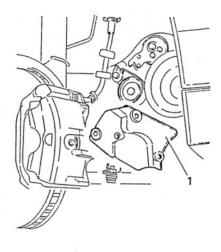

 Disconnect electrical connection of the constant idle speed actuator.




- Disconnect the two engine coolant sleeves (delivery and return to heater) from the thermostatic cup
- Disconnect the engine coolant outlet hose from the throttle valve.

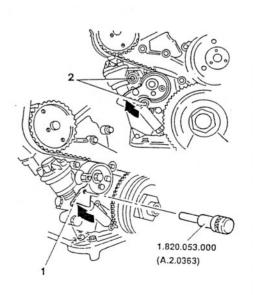

- Remove the ignition coils support together with sleeve connected to the thermostatic cup.
- 2. Remove the gasket.

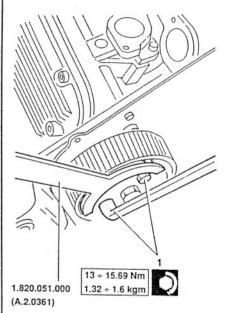

 Disconnect the sleeve connecting the thermostatic cup to the left cylinder head.


 Remove the previously loosened upper alternator support bulb and remove the alternator support together with the O-ring.

- 1. Remove the exhaust manifolds
- 2. Remove the gaskets.

- Raise the vehicle on a lift.
- Remove the hydraulic belt tensioner protection plate.




 Raise the arm of the hydraulic belt tensioner and lock the belt tensioner with tool N* 1.820.053.000 (A.2.0363).

NOTE: To introducce tool N° 1.820.053.000 (A.2.0363) it is necessary to align the housing hole with that in the belt tensioner body.

- Loosen the two nuts securing the body of the belt tensioner to the engine block.
- Rotate the hydraulic belt tensioner upwards and lock it in position by tightening the previously loosened nuts.

- Lower the vehicle.
- Slide the timing belt off the pulleys.
- Using tool N* 1.820.051.000 (A.2.0361) as a reactor, unscrew the three screws securing the right-hand timing pulley to the support hub.

01-146

TECHNICAL CHARACTERISTICS AND SPECIFICATIONS

All technical, dimensional checks and inspections relevant to the AR 67301 engine are presented below.

The same information has been included in the description of the repair procedure presented earlier, where reference can also be made to the figures.

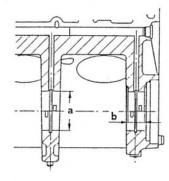
The information below has been synthetically enlarged with other data useful for the complete inspection of the engine and its parts.

The order in which the components are presented is the same as that for the reassembly of overhaulled engines.

TECHNICAL CHARACTERISTICS OF THE ENGINE

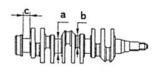
Engine		AR 67301
Cycle		eight cycles, four stroke
Fuel supply		electronic injection
Displacement	cm ³	2492
Number of cylinders		6 a V di 60°
Bore	mm	88
Stroke	mm	68.3
Maximum Power	CV DIN (kW CEE) giri/min	166 (121) 5800
Maximum torque	kg DIN (Nm CEE) r.p.m.	21,7 (216) 4500
Compression ratio		10
Engine oil pressure (1)	kPa (bars; kg/cm²)	
 at idle speed at 4000 r.p.m. 		147 (1.5; 1.53) 500 (5; 5.1)

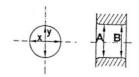
⁽¹⁾ With engine at operating temperature (oil at 100°C)



ENGINE MAIN MECHANICAL UNIT

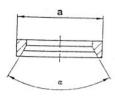
01-147


COMPLETE ENGINE BLOCK

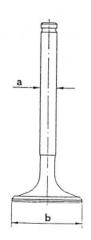

Engine block

		Unit: mm
	A - Red	63.657 + 63.663
Diameter of main supports (a)	B - Blue	63.663 ÷ 63.669
supports (a)	C - Green	63.669 + 63.675
Length of rear main support shoulder (b)		26.450 + 26.500

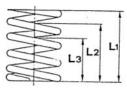
Crankshaft



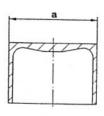
- (1) Ovalization X:Y
- (2) Taper A:B


		Unit: mm
	A - Red	59.973 + 59.979
Diamter of main journal (a)	B - Blue	59.967 + 59.973
	C - Green	59.961 + 59.967
Diameter of rod journal (b)	51.990 + 52.000	
blameter of fod journal (b)	B - Blue	51.980 + 51.990
Length of rear main journal (c)	31.300 + 31.335
Maximum ovalization of main rod journal (1)	0.004	
Maximum taper of main and rod journals (2)		0.010
Maximum error of parallelism between main and rod journals		0.015
Maximum eccentricity between main journals		0.040
Maximum deviation between centre lines of handle and main journal		0.300

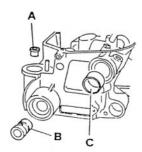
Valve seatings


			Unit: mm
Outer diameter of (a)	Intake	42.065 -	42.100
valve seat	Exhaust	37.095	- 37.111
Valve seat taper	(α)	90. 4	20'
Interference between valve	Intake	0.040 +	-0.100
eat and housing	Exhaust	0.070 +	0.111
Cylinder head shrink-fit temp stallation of valve seatings	perature for in-	100	.c

Valve


		Unit: m
Diameter of valve stem (a)	Intake	8.957 + 8.977 (1)
	Exhaust	8.950 + 8.980 (2)
	Exnaust	8.925 + 8.945
liameter of valve	Intake	40.850 + 41.000 (1)
head (b		40.800 + 41.000 (2)
	Exhaust	36.450 + 36.600
Radial play between valve stem and guide	Intake	0.023 ÷ 0.058 (1)
	mane .	0.020 ÷ 0.065 (2)
g	Exhaust	0.055 ÷ 0.090

Valve springs



		Unit: mm
Length of valve spring	Outer spring	44.6
at rest (L ₁)	Inner spring	44.1
Length of valve spring	Outer spring	32.5
with closed valve (L2)	Inner spring	30.5
Length of valve spring with open valve (L ₃)	Outer spring	23.5
	Inner spring	21.5
Load corresponding to spring length with valve	Outer spring	243 + 252 N (24.8 + 25.7 kg)
closed	Inner spring	126 + 130 N (12.8 + 13.3 kg)
Load corresponding to spring length with valve	Outer spring	470 ÷ 488 N (47.9 + 49.7 kg)
open	Inner spring	222 + 231 N (22.7 + 23.5 kg)

Valve cups

Cylinder head bushings

		Unit: mm	
	Intake	34.973 + 34.989	
cups (a)	Exhaust	21.971 + 21.989	
Radial play between valve	Intake	0.011 ÷ 0.052	
	Exhaust	0.011 + 0.050	

	Oliit. Illiii
Inner diameter of bushing "A"	19.000 ÷ 19.021
Inner diameter of bushing "B"	19.000 ÷ 19.021
Inner diameter of bushing "C"	32.000 ÷ 32.025

01-160

TIGHTENING TORQUES

Engine block

Part	Nm	kgm
Nuts securing main caps to supports on engine block (in oil)	84 + 92.7	8.56 ÷ 9.45
Screws securing flywheel to crankshaft (with fixative)	112.8	11.5
Nut securing crankshaft front pulley (in oil)	235.4	24
Screws securing rod caps (in oil)	53.4 ÷ 59	5.45 + 6.0
Screws securing water pump body to engine block	8.1 + 9.3	0.83 + 0.95
Screw securing belt tensioner pulley	17 ÷ 20	1.7 ÷ 2.0
Screws securing exhaust manifold	25.5 .	2.6
Screws securing front cover	8.1 + 9.3	0.83 + 0.95
Tightening starter motor	38.25 + 45	3.9 + 4.6
Oil sump drainage plug	64 ÷ 79	6.5 ÷ 8
Oil filter ·	14.7 + 19.6	1.5 + 2
Screws securing hydraulic belt tensioner cover	8.1 + 10	0.83 + 1.02
Oil sump retaining screws	9 + 11	0.9 + 1.1
Water pump pulley retaining screws	8.5 ÷ 10.5	0.87 + 1.07
Water pump cover retaining screws	6.5 + 10.5	0.66 + 1.07
Thermostat unit retaining screws	32.3 + 39.9	3.3 + 4.1

Cylinder head

Part	Nm	kgm
Nut securing camshaft (in oil)	16 ÷ 18	1.63 ÷ 1.84
Nut securing camshaft front hub	97 + 117.12	10 + 12
Spark plug tightening (in ISECO Molykote A oil)	24.5 ÷ 34.3	2.5 + 3.5
Engine oil pressure meter (on oil filter support)	10.6 ÷ 13.1	1.1 ÷ 1.3
Minimum engine oil level sensor (on engine block)	25	2.5
Minimum engine oil pressure warning lamp sensor (on oil filter support)	34 ÷ 42	3.5 ÷ 4.3
Engine oil temperature sensor (on engine block)	34 ÷ 42	3.5 + 4.3
Nut-screw regulating rocker arm clearance	14.8 ÷ 17.7	1.5 + 1.8
Screws securing return pulley	17.8 + 22.1	1.82 + 2.25
Screws securing timing cover	8.9 + 11	0.91 ÷ 1.1
Screws securing pulley to front and rear hubs	13 + 15.69	1.32 + 1.6

ENGINE MAIN MECHANICAL UNIT

1- 161 ل س

Tightening nuts securing cylinder head to engine block

Tightening sequence	Phase	Nm	kgm
8 4 1 6	When refitting: Gradually tighten following the indicated sequence	88.5 + 97.8	9 + 10
5 2 3 7	After trials and bench testing: With engine cold, loosen the nuts by one turn following the sequence indicated, smear with engine oil and tighten in the sequence shown		10 + 11

01-172

PROCEDURE FOR FAULT RECTIFICATION ENGINE - NOISY OPERATION

FAULTS AND SYMPTOMS	FAULT ISOLATION	TEST REFERENCE
BACKGROUND BEATING (DUE TO INBALANCE)	A background beat that can be heard when the engine is under load or noise coming from the rod-crankshaft and piston-cylinder liner couplings	D

NOTE: Before performing the tests indicated below, check the oil level, grade of oil and oil filter. If necessary change engine oil and filter using the prescribed quantities and grades.

ENGINE MAIN MECHANICAL UNIT

J**1-**173

BEATING WHEN ENGINE IS AT IDLE

TEST A

	TEST STEPS	RESULTS		REMEDY
100	CHECK VALVE CLEARANCE neck that the clearance between the cam heel radius in the top of the valve cup is within the specified limits.	OK OK	>	Carry out step A2 Adjust clearance
	VISUALY CHECK CAMS AND CUPS sually check the cuspid of the cams and the top of the ps for wear, scoring, binding etc.	OK OK	>	Carry out step A3 Replace defective items
	CHECK AXIAL PLAY neck that camshaft axial play is within the specified nits.	OK)	>	Carry out step A4 Replace defective cam-
of	CHECK CUPS AND SEATINGS heck the outer diameter of the cups and the diameter the relevant seatings; also check for scroing, binding ic.		>	Replace affected cups and/or relevant cylinde head

End of test A